Logo Header
  1. Môn Toán
  2. Giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Chuyển động của Mặt Trăng quanh Trái Đất theo một quỹ đạo là gần giống đường tròn với tốc độ không đổi. Giả thiết quỹ đạo này là đường tròn với bán kính khoảng 385 nghìn km. Thời gian Mặt Trăng quay một vòng quanh Trái Đất khoảng 27,3 ngày. a) Tính quãng đường đi được của Mặt Trăng sau 1 ngày (làm tròn kết quả đến hàng nghìn của kilômét). b) Tính tốc độ của Mặt Trăng (làm tròn kết quả đến hàng đơn vị của mét trên giây).

Đề bài

Chuyển động của Mặt Trăng quanh Trái Đất theo một quỹ đạo là gần giống đường tròn với tốc độ không đổi. Giả thiết quỹ đạo này là đường tròn với bán kính khoảng 385 nghìn km. Thời gian Mặt Trăng quay một vòng quanh Trái Đất khoảng 27,3 ngày.

a) Tính quãng đường đi được của Mặt Trăng sau 1 ngày (làm tròn kết quả đến hàng nghìn của kilômét).

b) Tính tốc độ của Mặt Trăng (làm tròn kết quả đến hàng đơn vị của mét trên giây).

Phương pháp giải - Xem chi tiếtGiải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1 1

a) Bước 1: Tính chu vi C hình tròn.

Bước 2: Quãng đường đi được của mặt trăng sau 1 ngày là \(\frac{C}{{27,3}}\).

b) Tốc độ mặt trăng = quãng đường (chu vi) : thời gian.

Lời giải chi tiết

Bán kính quỹ đạo tròn: 385000 km

a) Chu vi hình tròn là:

\(C = 2\pi R = 2\pi .385000 \approx 2417800\)km.

Quãng đường đi được của Mặt Trăng sau 1 ngày là:

\(2417800:27,3 \approx 89000\)km.

b) Tốc độ của Mặt Trăng là:

\(\frac{{2\pi .385000.1000}}{{27,3.24.60.60}} \approx 1026\)m/s.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1: Hướng dẫn chi tiết

Bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.

Nội dung bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

Bài 38 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng.
  • Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Lời giải chi tiết bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

Để giúp bạn hiểu rõ hơn về cách giải bài 38, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài tập.

Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất

Ví dụ: Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó:

  • Hệ số góc a = 2
  • Tung độ gốc b = -3

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.

Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng

Ví dụ: Tìm tọa độ giao điểm của hai đường thẳng y = x + 1 và y = -x + 3.

Lời giải:

Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình sau:

  1. y = x + 1
  2. y = -x + 3

Thay phương trình (1) vào phương trình (2), ta được:

x + 1 = -x + 3

2x = 2

x = 1

Thay x = 1 vào phương trình (1), ta được:

y = 1 + 1 = 2

Vậy, tọa độ giao điểm của hai đường thẳng là (1; 2).

Dạng 3: Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất

Ví dụ: Một người đi xe máy với vận tốc 40 km/h. Hỏi sau 2 giờ người đó đi được bao nhiêu km?

Lời giải:

Gọi x là thời gian đi (giờ) và y là quãng đường đi được (km). Ta có hàm số y = 40x.

Khi x = 2, ta có y = 40 * 2 = 80.

Vậy, sau 2 giờ người đó đi được 80 km.

Lưu ý khi giải bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1

  • Nắm vững các kiến thức về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, hệ số góc, tung độ gốc và cách xác định.
  • Luyện tập thường xuyên các dạng bài tập khác nhau để rèn luyện kỹ năng giải toán.
  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Kiểm tra lại kết quả sau khi giải xong để đảm bảo tính chính xác.

Tổng kết

Bài 38 trang 120 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9