Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 40 trang 73 Sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, logic và dễ tiếp thu nhất.
Biết hai số (u,v) thỏa mãn (u - v = 10) và (uv = 11). Tính (left| {u + v} right|).
Đề bài
Biết hai số \(u,v\) thỏa mãn \(u - v = 10\) và \(uv = 11\). Tính \(\left| {u + v} \right|\).
Phương pháp giải - Xem chi tiết
Bước 1: Lập phương trình có 2 nghiệm là \(u,v\) thỏa mãn điều kiện đề bài.
Bước 2: Áp dụng định lý Viète để tìm \(u + v\).
Bước 3: Tính \(\left| {u + v} \right|\).
Lời giải chi tiết
Đặt \(S = u - v = 10\) và \(P = uv = 11\).
Ta có \({S^2} - 4P = {10^2} - 4.11 = 56 > 0\) nên hai số \(u,v\) là nghiệm của phương trình: \({X^2} - 10X + 11 = 0\) (*) và các hệ số của phương trình là \(a = 1;b = - 10;c = 11\).
Vì \(u,v\) là nghiệm của phương trình (*) nên áp dụng định lý Viète ta có:
\(u + v = \frac{{ - \left( { - 10} \right)}}{1} = 10\).
Vậy \(\left| {u + v} \right| = \left| {10} \right| = 10\).
Bài 40 trang 73 Sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, biểu đồ hàm số và ứng dụng của hàm số trong đời sống.
Bài 40 bao gồm các dạng bài tập sau:
Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.
Lời giải:
Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.
So sánh với dạng tổng quát, ta có a = 2 và b = -3.
Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.
Vẽ đồ thị của hàm số y = -x + 1.
Lời giải:
Để vẽ đồ thị của hàm số y = -x + 1, ta cần xác định hai điểm thuộc đồ thị.
Chọn x = 0, ta có y = -0 + 1 = 1. Vậy điểm A(0; 1) thuộc đồ thị.
Chọn x = 1, ta có y = -1 + 1 = 0. Vậy điểm B(1; 0) thuộc đồ thị.
Vẽ đường thẳng đi qua hai điểm A(0; 1) và B(1; 0), ta được đồ thị của hàm số y = -x + 1.
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -2x + 5.
Lời giải:
Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình:
{ y = x + 2y = -2x + 5 }
Thay y = x + 2 vào phương trình y = -2x + 5, ta được:
x + 2 = -2x + 5
3x = 3
x = 1
Thay x = 1 vào phương trình y = x + 2, ta được:
y = 1 + 2 = 3
Vậy, tọa độ giao điểm của hai đường thẳng là (1; 3).
Sách giáo khoa Toán 9 - Cánh Diều tập 2
Sách bài tập Toán 9 - Cánh Diều tập 2
Các trang web học Toán online uy tín
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 40 trang 73 Sách bài tập Toán 9 - Cánh Diều tập 2. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!