Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 21 trang 113 sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho điểm O cố định và số đo α° (0° < α° < 180°). a) Ở Hình 20, phép quay ngược chiều α° tâm O biến điểm A thành điểm A’ và biến điểm B thành điểm B’. Chứng minh AB = A’B’. b) Ở Hình 21, phép quay thuận chiều α° tâm O biến điểm M thành điểm M’ và biến điểm N thành điểm N’. Hỏi MN có bằng M’N’ hay không? Vì sao?
Đề bài
Cho điểm O cố định và số đo α° (0° < α° < 180°).
a) Ở Hình 20, phép quay ngược chiều α° tâm O biến điểm A thành điểm A’ và biến điểm B thành điểm B’. Chứng minh AB = A’B’.
b) Ở Hình 21, phép quay thuận chiều α° tâm O biến điểm M thành điểm M’ và biến điểm N thành điểm N’. Hỏi MN có bằng M’N’ hay không? Vì sao?
Phương pháp giải - Xem chi tiết
Dựa vào phép quay thuận chiều \({\alpha ^o}\) (\({0^o} < {\alpha ^o} < {360^o}\)) tâm O giữ nguyên điểm O, biến điểm M (khác điểm O) thành điểm M’ thuộc đường tròn (O; OM) sao cho tia OM quay thuận chiều kim đồng hồ đến tia OM’ thì điểm M tạo nên cung MnM’ có số đo \({\alpha ^o}\).
Dựa vào phép quay thuận chiều \({\alpha ^o}\) (\({0^o} < {\alpha ^o} < {360^o}\)) tâm O được phát biểu tương tự như trên.
Lời giải chi tiết
a) Vì phép quay ngược chiều α° tâm O biến điểm A thành điểm A’ nên OA = OA’ và \(\widehat {AOA'} = {\alpha ^o}\).
Vì phép quay ngược chiều α° tâm O biến điểm B thành điểm B’ nên OB = OB’ và \(\widehat {BOB'} = {\alpha ^o}\).
Ta có \(\widehat {AOB} = \widehat {AOA'} - \widehat {A'OB} = {\alpha ^o} - \widehat {A'OB};\widehat {A'OB'} = \widehat {BOB'} - \widehat {A'OB} = {\alpha ^o} - \widehat {A'OB}\).
Suy ra \(\widehat {AOB} = \widehat {A'OB'}\).
Xét ∆OAB và ∆OA’B’ có:
OA = OA’, \(\widehat {AOB} = \widehat {A'OB'}\), OB = OB’
Do đó ∆OAB = ∆OA’B’ (c.g.c)
Suy ra AB = A’B’ (hai cạnh tương ứng).
b) Vì phép quay thuận chiều α° tâm O biến điểm M thành điểm M’ nên OM = OM’ và \(\widehat {MOM'} = {\alpha ^o}\).
Vì phép quay thuận chiều α° tâm O biến điểm N thành điểm N’ nên ON = ON’ và \(\widehat {NON'} = {\alpha ^o}\).
Ta có :
\(\widehat {MON} = \widehat {MOM'} - \widehat {NOM'} = {\alpha ^o} - \widehat {NOM'};\widehat {M'ON'} = \widehat {NON'} - \widehat {NOM'} = {\alpha ^o} - \widehat {NOM'}.\)
Suy ra \(\widehat {MON} = \widehat {M'ON'}\).
Xét ∆OMN và ∆OM’N’ có:
OM = OM’, \(\widehat {MON} = \widehat {M'ON'}\), ON = ON’
Do đó ∆OMN = ∆OM’N (c.g.c)
Suy ra MN = M’N’ (hai cạnh tương ứng).
Bài 21 trang 113 sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài 21 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 21 trang 113 sách bài tập Toán 9 - Cánh Diều tập 2, học sinh cần nắm vững các kiến thức sau:
Câu a: Giả sử hàm số có dạng y = ax + b. Vì đồ thị hàm số đi qua điểm A(0; 2), ta thay x = 0 và y = 2 vào công thức hàm số, ta được: 2 = a * 0 + b => b = 2. Vậy hàm số có dạng y = ax + 2.
Câu b: Vì đồ thị hàm số đi qua điểm B(1; 5), ta thay x = 1 và y = 5 vào công thức hàm số y = ax + 2, ta được: 5 = a * 1 + 2 => a = 3. Vậy hàm số có dạng y = 3x + 2.
Câu c: Hệ số a = 3 cho biết độ dốc của đường thẳng. Khi x tăng lên 1 đơn vị, thì y tăng lên 3 đơn vị.
Bài tập: Tìm giá trị của y khi x = 2 với hàm số y = 3x + 2.
Lời giải: Thay x = 2 vào công thức hàm số, ta được: y = 3 * 2 + 2 = 8. Vậy khi x = 2 thì y = 8.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 9 - Cánh Diều tập 2 hoặc trên các trang web học toán online.
Bài 21 trang 113 sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và cách vận dụng kiến thức vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã có thể tự tin giải bài tập này một cách hiệu quả.