Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.

Cho Hình 1 có \(OA = AB = BC = CD = DE = EG = 2cm\) và \(\widehat {OAB} = \widehat {OBC} = \widehat {OCD} = \widehat {ODE} = \widehat {OEG} = 90^\circ \). Tính độ dài các cạnh \(OB,OC,OD,OE,OG.\)

Đề bài

Cho Hình 1 có \(OA = AB = BC = CD = DE = EG = 2cm\) và \(\widehat {OAB} = \widehat {OBC} = \widehat {OCD} = \widehat {ODE} = \widehat {OEG} = 90^\circ \). Tính độ dài các cạnh \(OB,OC,OD,OE,OG.\)

Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 1

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 2

Áp dụng định lý Pythagore lần lượt cho các tam giác vuông OAB, OCB, OCD, ODE, OGE.

Lời giải chi tiết

Áp dụng định lý Pythagore trong các tam giác vuông:

- Tam giác OAB ta có:

\(O{B^2} = O{A^2} + A{B^2} = {2^2} + {2^2} = 8\),

do đó \(OB = \sqrt 8 cm.\)

- Tam giác OCB ta có:

\(O{C^2} = O{B^2} + C{B^2} = {\left( {\sqrt 8 } \right)^2} + {2^2} = 12\),

do đó \(OC = \sqrt {12} cm.\)

- Tam giác OCD ta có:

\(O{D^2} = O{C^2} + C{D^2} = {\left( {\sqrt {12} } \right)^2} + {2^2} = 16\),

do đó \(OD = 4cm.\)

- Tam giác ODE ta có:

\(O{E^2} = O{D^2} + D{E^2} = {4^2} + {2^2} = 20\),

do đó \(OE = \sqrt {20} cm.\)

- Tam giác OGE ta có:

\(O{G^2} = O{E^2} + G{E^2} = {\sqrt {20} ^2} + {2^2} = 24\),

do đó \(OG = \sqrt {24} cm.\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1: Tổng quan

Bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phương pháp giải phương trình như phân tích thành nhân tử, sử dụng công thức nghiệm tổng quát, hoặc phương pháp đặt ẩn phụ.

Nội dung bài tập

Bài 7 thường bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Giải các phương trình bậc hai cụ thể.
  • Xác định điều kiện để phương trình có nghiệm.
  • Tìm các giá trị của tham số để phương trình có nghiệm thỏa mãn một điều kiện nào đó.
  • Vận dụng phương trình bậc hai để giải quyết các bài toán thực tế.

Phương pháp giải bài tập

Để giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Xác định hệ số của phương trình: Xác định chính xác các hệ số a, b, c của phương trình bậc hai.
  2. Tính delta (Δ): Tính delta theo công thức Δ = b2 - 4ac.
  3. Xét các trường hợp của delta:
    • Nếu Δ > 0: Phương trình có hai nghiệm phân biệt: x1 = (-b + √Δ) / 2a và x2 = (-b - √Δ) / 2a.
    • Nếu Δ = 0: Phương trình có nghiệm kép: x1 = x2 = -b / 2a.
    • Nếu Δ < 0: Phương trình vô nghiệm.
  4. Kiểm tra điều kiện của nghiệm: Đảm bảo rằng các nghiệm tìm được thỏa mãn điều kiện xác định của phương trình (nếu có).
  5. Thay nghiệm vào phương trình ban đầu để kiểm tra: Bước này giúp bạn tránh sai sót trong quá trình giải.

Ví dụ minh họa

Ví dụ: Giải phương trình 2x2 - 5x + 2 = 0

Giải:

a = 2, b = -5, c = 2

Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9

Vì Δ > 0, phương trình có hai nghiệm phân biệt:

x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2

x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5

Vậy, phương trình có hai nghiệm là x1 = 2 và x2 = 0.5

Lưu ý quan trọng

Khi giải phương trình bậc hai, bạn cần chú ý đến các điều kiện sau:

  • Kiểm tra kỹ các hệ số của phương trình.
  • Tính toán delta một cách chính xác.
  • Lựa chọn phương pháp giải phù hợp với từng loại phương trình.
  • Kiểm tra lại nghiệm để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập toán 9 - Cánh diều tập 1, hoặc tìm kiếm trên các trang web học toán online uy tín.

Kết luận

Bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9