Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.
Cho Hình 1 có \(OA = AB = BC = CD = DE = EG = 2cm\) và \(\widehat {OAB} = \widehat {OBC} = \widehat {OCD} = \widehat {ODE} = \widehat {OEG} = 90^\circ \). Tính độ dài các cạnh \(OB,OC,OD,OE,OG.\)
Đề bài
Cho Hình 1 có \(OA = AB = BC = CD = DE = EG = 2cm\) và \(\widehat {OAB} = \widehat {OBC} = \widehat {OCD} = \widehat {ODE} = \widehat {OEG} = 90^\circ \). Tính độ dài các cạnh \(OB,OC,OD,OE,OG.\)
Phương pháp giải - Xem chi tiết
Áp dụng định lý Pythagore lần lượt cho các tam giác vuông OAB, OCB, OCD, ODE, OGE.
Lời giải chi tiết
Áp dụng định lý Pythagore trong các tam giác vuông:
- Tam giác OAB ta có:
\(O{B^2} = O{A^2} + A{B^2} = {2^2} + {2^2} = 8\),
do đó \(OB = \sqrt 8 cm.\)
- Tam giác OCB ta có:
\(O{C^2} = O{B^2} + C{B^2} = {\left( {\sqrt 8 } \right)^2} + {2^2} = 12\),
do đó \(OC = \sqrt {12} cm.\)
- Tam giác OCD ta có:
\(O{D^2} = O{C^2} + C{D^2} = {\left( {\sqrt {12} } \right)^2} + {2^2} = 16\),
do đó \(OD = 4cm.\)
- Tam giác ODE ta có:
\(O{E^2} = O{D^2} + D{E^2} = {4^2} + {2^2} = 20\),
do đó \(OE = \sqrt {20} cm.\)
- Tam giác OGE ta có:
\(O{G^2} = O{E^2} + G{E^2} = {\sqrt {20} ^2} + {2^2} = 24\),
do đó \(OG = \sqrt {24} cm.\)
Bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về công thức nghiệm của phương trình bậc hai, điều kiện xác định của nghiệm, và các phương pháp giải phương trình như phân tích thành nhân tử, sử dụng công thức nghiệm tổng quát, hoặc phương pháp đặt ẩn phụ.
Bài 7 thường bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Giải phương trình 2x2 - 5x + 2 = 0
Giải:
a = 2, b = -5, c = 2
Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
Vậy, phương trình có hai nghiệm là x1 = 2 và x2 = 0.5
Khi giải phương trình bậc hai, bạn cần chú ý đến các điều kiện sau:
Để củng cố kiến thức và kỹ năng giải phương trình bậc hai, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập toán 9 - Cánh diều tập 1, hoặc tìm kiếm trên các trang web học toán online uy tín.
Bài 7 trang 53 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!