Logo Header
  1. Môn Toán
  2. Giải bài 21 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 21 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 21 trang 20 Sách bài tập Toán 9 - Cánh Diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 21 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 21 trang 20 một cách cẩn thận, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.

Bác Lan có 500 triệu đồng để đầu tư vào hai khoản: trái phiếu và gửi tiết kiệm ngân hàng với kì hạn 12 tháng. Lãi suất của trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 7%/năm và 6%/năm. Tính số tiền mà bác Lan đầu tư vào mỗi khoản để mỗi năm nhận được tiền lãi là 32 triệu đồng từ hai khoản đầu tư đó.

Đề bài

Bác Lan có 500 triệu đồng để đầu tư vào hai khoản: trái phiếu và gửi tiết kiệm ngân hàng với kì hạn 12 tháng. Lãi suất của trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 7%/năm và 6%/năm. Tính số tiền mà bác Lan đầu tư vào mỗi khoản để mỗi năm nhận được tiền lãi là 32 triệu đồng từ hai khoản đầu tư đó.

Phương pháp giải - Xem chi tiếtGiải bài 21 trang 20 sách bài tập toán 9 - Cánh diều tập 1 1

Bước 1: Đặt ẩn và điều kiện cho ẩn (số tiền đâu tư trái phiếu và gửi tiết kiệm ngân hàng lần lượt là x,y).

Bước 2: Viết phương trình biểu diễn tổng số tiền đầu tư vào 2 khoản.

Bước 3: Viết phương trình biểu diễn tiền lãi nhận được trong 1 năm.

Bước 4: Giải hệ phương trình và đối chiếu điều kiện.

Lời giải chi tiết

Gọi số tiền mà bác Lan đầu tư trái phiếu và gửi tiết kiệm ngân hàng lần lượt là x, y (triệu đồng, 0 0 < x,y < 500).

Do tổng số tiền đầu tư là 500 triệu đồng nên ta có phương trình: \(x + y = 500\)

Lãi suất của trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 7%/năm và 6%/năm nên ta có phương trình: \(0,07x + 0,06y = 32\)

Ta lập được hệ phương trình \(\left\{ \begin{array}{l}x + y = 500\left( 1 \right)\\0,07x + 0,06y = 32\left( 2 \right)\end{array} \right.\)

Giải hệ phương trình trên:

Từ (1) ta có \(x = 500 - y\) (3)

Thế (3) vào (2) ta được \(0,07\left( {500 - y} \right) + 0,06y = 32\)

\(\begin{array}{l}35 - 0,07y + 0,06y = 32\\0,01y = 3\\y = 300\end{array}\)

Thay \(y = 300\) vào (3) ta có \(x = 500 - 300 = 200\)

Ta thấy \(x = 1000,y = 1500\) thỏa mãn điều kiện \(0 < x,y < 500\). Vậy số tiền mà bác Lan đầu tư trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 200 và 300 triệu đồng.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 21 trang 20 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán 9 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 21 trang 20 Sách bài tập Toán 9 - Cánh Diều tập 1: Tổng quan

Bài 21 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài tập

Bài 21 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định hệ số a của hàm số y = ax + b khi biết một điểm thuộc đồ thị hàm số.
  • Tìm giá trị của y khi biết x và hàm số y = ax + b.
  • Giải các bài toán ứng dụng liên quan đến hàm số bậc nhất.

Phương pháp giải

Để giải bài 21 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1, học sinh cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực.
  2. Đồ thị hàm số bậc nhất: Đồ thị hàm số bậc nhất là một đường thẳng.
  3. Cách xác định hàm số bậc nhất: Để xác định hàm số bậc nhất, ta cần biết hai điểm thuộc đồ thị hàm số hoặc biết hệ số a và một điểm thuộc đồ thị hàm số.
  4. Cách tính giá trị của hàm số: Để tính giá trị của hàm số tại một điểm cho trước, ta thay giá trị của x vào công thức hàm số và tính giá trị của y.

Lời giải chi tiết bài 21

Câu a: (Ví dụ minh họa, cần nội dung cụ thể từ sách bài tập)

Giả sử đề bài cho: Hàm số y = ax + b đi qua điểm A(1; 2). Thay x = 1 và y = 2 vào công thức hàm số, ta được:

2 = a * 1 + b

=> a + b = 2

Để tìm a và b, cần thêm một thông tin nữa (ví dụ: hàm số đi qua điểm B(2; 3)).

Câu b: (Ví dụ minh họa, cần nội dung cụ thể từ sách bài tập)

Giả sử đề bài cho: Hàm số y = 2x - 1. Tính giá trị của y khi x = 3.

Thay x = 3 vào công thức hàm số, ta được:

y = 2 * 3 - 1

=> y = 5

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 22 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1
  • Bài 23 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc nhất, bạn cần chú ý:

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Vận dụng đúng các kiến thức về hàm số bậc nhất.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, bạn đã có thể giải bài 21 trang 20 sách bài tập Toán 9 - Cánh Diều tập 1 một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Khái niệmGiải thích
Hàm số bậc nhấty = ax + b (a ≠ 0)
Hệ số aXác định độ dốc của đường thẳng
Hệ số bXác định giao điểm của đường thẳng với trục tung

Tài liệu, đề thi và đáp án Toán 9