Logo Header
  1. Môn Toán
  2. Giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 20 trang 20 một cách cẩn thận, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.

Một nhà máy sản xuất hai loại xi măng: loại I và loại II. Cứ sản xuất mỗi tấn xi măng loại I thì nhà máy thải ra 0,5 kg CO2 (carbon dioxide) và 0,3 kg SO3 (sulfur trioxide), sản xuất mỗi tấn xi măng loại II thì nhà máy thải ra 0,8 kg CO2 và 0,45 kg SO3. Trung bình mỗi ngày, nhà máy nhận được thông số lượng khí thải CO2 và SO3 lần lượt là 1700 kg và 975 kg. Tính khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được.

Đề bài

Một nhà máy sản xuất hai loại xi măng: loại I và loại II. Cứ sản xuất mỗi tấn xi măng loại I thì nhà máy thải ra 0,5 kg CO2 (carbon dioxide) và 0,3 kg SO3 (sulfur trioxide), sản xuất mỗi tấn xi măng loại II thì nhà máy thải ra 0,8 kg CO2 và 0,45 kg SO3. Trung bình mỗi ngày, nhà máy nhận được thông số lượng khí thải CO2 và SO3 lần lượt là 1700 kg và 975 kg. Tính khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được.

Phương pháp giải - Xem chi tiếtGiải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1 1

Bước 1: Đặt ẩn và điều kiện cho ẩn (khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được lần lượt là x,y).

Bước 2: Biểu diễn khối lượng khí thải CO2.

Bước 3: Biểu diễn khối lượng khí thải SO3.

Bước 4: Giải hệ phương trình và đối chiếu điều kiện.

Lời giải chi tiết

Gọi khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được lần lượt là x,y (kg, x > y> 0)

 Do mỗi tấn xi măng loại I và loại II nhà máy thải ra lần lượt là 0,5 kg và 0,8kg CO2, tổng lượng khí thải CO2 là 1700kg nên ta có phương trình:

\(0,5x + 0,8y = 1700\)

Do mỗi tấn xi măng loại I và loại II nhà máy thải ra lần lượt là 0,3 kg và 0,45 kg SO3, tổng lượng khí thải SO3 là 975kg nên ta có phương trình:

\(0,3x + 0,45y = 975\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}0,5x + 0,8y = 1700\left( 1 \right)\\0,3x + 0,45y = 975\left( 2 \right)\end{array} \right.\)

Giải hệ phương trình trên:

Từ (1) ta có \(x = 3400 - 1,6y\) (3)

Thế (3) vào (2) ta được \(0,3\left( {3400 - 1,6y} \right) + 0,45y = 975\)

\(\begin{array}{l}1020 - 0,48y + 0,45y = 975\\0,03y = 45\\y = 1500\end{array}\)

Thay \(y = 1500\) vào (3) ta có \(x = 3400 - 1,6.1500 = 1000\)

Ta thấy \(x = 1000,y = 1500\) thỏa mãn điều kiện \(x > 0,y > 0\).

Vậy khối lượng xi măng loại I và loại II trung bình mỗi ngày nhà máy sản xuất được lần lượt là 1000 kg và 1500kg.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán 9 sgk trên nền tảng soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1: Tóm tắt lý thuyết và phương pháp giải

Bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:

  • Hàm số bậc nhất: Dạng y = ax + b (a ≠ 0).
  • Hệ số a: Xác định độ dốc của đường thẳng biểu diễn hàm số.
  • Hệ số b: Xác định tung độ gốc của đường thẳng.
  • Đồ thị hàm số: Đường thẳng đi qua hai điểm bất kỳ thuộc đồ thị.

Ngoài ra, học sinh cũng cần thành thạo các phương pháp giải bài tập liên quan đến hàm số bậc nhất, như:

  • Xác định hàm số: Tìm hệ số a và b dựa vào các thông tin đã cho.
  • Vẽ đồ thị hàm số: Chọn hai điểm bất kỳ thuộc đồ thị và nối chúng lại.
  • Tìm giá trị của y khi biết x: Thay giá trị của x vào hàm số và tính giá trị của y.
  • Tìm giá trị của x khi biết y: Thay giá trị của y vào hàm số và giải phương trình để tìm giá trị của x.

Giải chi tiết bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1:

Câu 1: (a) Vẽ đồ thị của hàm số y = 2x - 3

Để vẽ đồ thị của hàm số y = 2x - 3, ta cần xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn:

  • Khi x = 0, y = 2(0) - 3 = -3. Vậy điểm A(0; -3) thuộc đồ thị.
  • Khi x = 1, y = 2(1) - 3 = -1. Vậy điểm B(1; -1) thuộc đồ thị.

Nối hai điểm A và B lại, ta được đồ thị của hàm số y = 2x - 3.

Câu 2: (b) Tìm tọa độ giao điểm của hai đường thẳng y = x + 1 và y = -x + 3

Để tìm tọa độ giao điểm của hai đường thẳng y = x + 1 và y = -x + 3, ta cần giải hệ phương trình sau:

Giải hệ phương trình, ta được x = 1 và y = 2. Vậy tọa độ giao điểm của hai đường thẳng là (1; 2).

Luyện tập thêm

Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập sau:

  • Bài 21 trang 20 sách bài tập toán 9 - Cánh diều tập 1
  • Bài 22 trang 20 sách bài tập toán 9 - Cánh diều tập 1

Kết luận

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 20 trang 20 sách bài tập toán 9 - Cánh diều tập 1. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 9