Logo Header
  1. Môn Toán
  2. Giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 13 trang 14 một cách cẩn thận, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.

Cô Hà sử dụng dịch vụ điện thoại di động với giá cước gọi nội mạng và gọi ngoại mạng lần lượt là 1 190 đồng/phút và 1 390 đồng/phút. Trong tháng 10, cô Hà đã sử dụng 500 phút gọi (cả nội mạng và ngoại mạng) với tiền cước là 635 000 đồng. Gọi x và y lần lượt là số phút gọi nội mạng và ngoại mạng trong tháng 10 của cô Hà. a) Viết hệ hai phương trình bậc nhất hai ẩn x, y biểu thị mối quan hệ giữa các đại lượng. b) Cặp số (300 ; 200) có phải là nghiệm của hệ phương trình ở câu a hay không? Vì sao

Đề bài

Cô Hà sử dụng dịch vụ điện thoại di động với giá cước gọi nội mạng và gọi ngoại mạng lần lượt là 1 190 đồng/phút và 1 390 đồng/phút. Trong tháng 10, cô Hà đã sử dụng 500 phút gọi (cả nội mạng và ngoại mạng) với tiền cước là 635 000 đồng. Gọi x và y lần lượt là số phút gọi nội mạng và ngoại mạng trong tháng 10 của cô Hà.

a) Viết hệ hai phương trình bậc nhất hai ẩn x, y biểu thị mối quan hệ giữa các đại lượng.

b) Cặp số (300 ; 200) có phải là nghiệm của hệ phương trình ở câu a hay không? Vì sao?

Phương pháp giải - Xem chi tiếtGiải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1 1

a) Bước 1: Viết phương trình biểu diễn tổng số phút gọi nội mạng và ngoại mạng.

Bước 2: Viết phương trình biểu diễn tổng số tiền gọi nội mạng và ngoại mạng.

b) Thay cặp số (300 ; 200) vào từng phương trình, nếu kết quả của vế trái ở mỗi phương trình bằng vế phải của phương trình đó thì cặp số đó là nghiệm của hệ phương trình.

Lời giải chi tiết

a) Điều kiện: \(x,y > 0.\)

Cô Hà đã sử dụng 500 phút gọi (cả nội mạng và ngoại mạng) nên ta có phương trình:

\(x + y = 500.\) (1)

Tiền cước đã sử dụng nội mạng và ngoại mạng lần lượt là \(1190x\) và \(1390y.\)

Vì tổng tiền cước là 635 000 đồng nên ta có phương trình

\(1190x + 1390y = 635000\) hay \(119x + 139y = 63500\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 500\\119x + 139y = 63500\end{array} \right.\)

b) Thay x = 300, y = 200 vào từng phương trình trong hệ, ta có:

300 + 200 = 500 và 119.300 + 139.200 = 63500

Vậy hệ phương trình trên nhận cặp số (300; 200) làm nghiệm.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1: Tóm tắt lý thuyết và phương pháp giải

Bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:

  • Hàm số bậc nhất: Dạng y = ax + b (a ≠ 0).
  • Hệ số a: Xác định độ dốc của đường thẳng biểu diễn hàm số.
  • Hệ số b: Xác định tung độ gốc của đường thẳng.
  • Đồ thị hàm số: Đường thẳng đi qua hai điểm bất kỳ thuộc đồ thị.

Ngoài ra, học sinh cũng cần thành thạo các phương pháp giải bài tập liên quan đến hàm số bậc nhất, như:

  • Xác định hàm số: Tìm hệ số a và b dựa vào các thông tin đã cho.
  • Vẽ đồ thị hàm số: Chọn hai điểm bất kỳ thuộc đồ thị và nối chúng lại.
  • Tìm giá trị của y: Thay giá trị của x vào hàm số để tính giá trị tương ứng của y.
  • Tìm giá trị của x: Thay giá trị của y vào hàm số và giải phương trình để tìm giá trị tương ứng của x.

Giải chi tiết bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1

Dưới đây là lời giải chi tiết cho từng phần của bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1:

Câu a)

Đề bài: Cho hàm số y = 2x - 3. Tính giá trị của y khi x = -1; x = 0; x = 2.

Giải:

  • Khi x = -1, y = 2*(-1) - 3 = -5.
  • Khi x = 0, y = 2*0 - 3 = -3.
  • Khi x = 2, y = 2*2 - 3 = 1.

Câu b)

Đề bài: Cho hàm số y = -x + 1. Tìm x khi y = 0; y = 2; y = -1.

Giải:

  • Khi y = 0, -x + 1 = 0 => x = 1.
  • Khi y = 2, -x + 1 = 2 => x = -1.
  • Khi y = -1, -x + 1 = -1 => x = 2.

Câu c)

Đề bài: Vẽ đồ thị của hàm số y = x + 2.

Giải:

Để vẽ đồ thị của hàm số y = x + 2, ta cần tìm hai điểm thuộc đồ thị. Ví dụ:

  • Khi x = 0, y = 0 + 2 = 2. Ta có điểm A(0; 2).
  • Khi x = -2, y = -2 + 2 = 0. Ta có điểm B(-2; 0).

Nối hai điểm A và B lại, ta được đồ thị của hàm số y = x + 2.

Bài tập vận dụng

Để củng cố kiến thức về hàm số bậc nhất, bạn có thể tự giải các bài tập sau:

  1. Cho hàm số y = 3x - 1. Tính giá trị của y khi x = -2; x = 1; x = 3.
  2. Cho hàm số y = -2x + 4. Tìm x khi y = 0; y = 2; y = -2.
  3. Vẽ đồ thị của hàm số y = -x + 3.

Kết luận

Bài 13 trang 14 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp học sinh ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 9