Logo Header
  1. Môn Toán
  2. Giải bài 28 trang 21 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 28 trang 21 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 28 trang 21 Sách bài tập Toán 9 - Cánh Diều tập 1

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 28 trang 21 Sách bài tập Toán 9 - Cánh Diều tập 1. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và đầy đủ nhất, đồng thời trình bày một cách rõ ràng để bạn có thể dễ dàng theo dõi và áp dụng vào các bài tập tương tự.

Giải các phương trình sau: a) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{16}}{{{x^2} - 1}}\) b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

Đề bài

Giải các phương trình sau:

a) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{16}}{{{x^2} - 1}}\)

b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

Phương pháp giải - Xem chi tiếtGiải bài 28 trang 21 sách bài tập toán 9 - Cánh diều tập 1 1

- Tìm điều kiện xác định.

- Quy đồng khử mẫu.

Lời giải chi tiết

a) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{16}}{{{x^2} - 1}}\)

Điều kiện xác định: \(x \ne \pm 1\)

\(\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{16}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)

\(\begin{array}{l}{x^2} + 2x + 1 - {x^2} + 2x - 1 = 16\\4x = 16\\x = 4\end{array}\)

Ta thấy \(x = 4\) thỏa mãn điều kiện. Vậy phương trình có nghiệm \(x = 4\).

b) \(\frac{2}{{{x^2} - 4}} - \frac{{x - 1}}{{x\left( {x - 2} \right)}} + \frac{{x - 4}}{{x\left( {x + 2} \right)}} = 0\)

Điều kiện xác định: \(x \ne \pm 2,x \ne 0\)

\(\begin{array}{l}\frac{{2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{x\left( {x + 2} \right)\left( {x - 2} \right)}} = 0\\2x - \left( {{x^2} + x - 2} \right) + \left( {{x^2} - 6x + 8} \right) = 0\\2x - {x^2} - x + 2 + {x^2} - 6x + 8 = 0\\ - 5x = - 10\\x = 2\end{array}\)

Ta thấy \(x = 2\) không thỏa mãn điều kiện. Vậy phương trình vô nghiệm.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 28 trang 21 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 28 trang 21 Sách bài tập Toán 9 - Cánh Diều tập 1: Tổng quan

Bài 28 trang 21 Sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, biểu đồ hàm số và ứng dụng của hàm số trong đời sống.

Nội dung chi tiết bài 28

Bài 28 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Dạng 2: Vẽ đồ thị hàm số bậc nhất.
  • Dạng 3: Tìm tọa độ giao điểm của hai đường thẳng.
  • Dạng 4: Ứng dụng hàm số bậc nhất để giải quyết các bài toán thực tế.

Lời giải chi tiết bài 28 trang 21

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 28 trang 21, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a)

Đề bài: Cho hàm số y = 2x - 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Lời giải:

Hàm số y = 2x - 3 là hàm số bậc nhất có dạng y = ax + b, trong đó:

  • a là hệ số góc, a = 2
  • b là tung độ gốc, b = -3

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là -3.

Câu b)

Đề bài: Vẽ đồ thị hàm số y = 2x - 3.

Lời giải:

Để vẽ đồ thị hàm số y = 2x - 3, ta thực hiện các bước sau:

  1. Xác định hai điểm thuộc đồ thị hàm số. Ví dụ, ta có thể chọn x = 0 và x = 1.
  2. Khi x = 0, y = 2(0) - 3 = -3. Vậy, điểm A(0; -3) thuộc đồ thị hàm số.
  3. Khi x = 1, y = 2(1) - 3 = -1. Vậy, điểm B(1; -1) thuộc đồ thị hàm số.
  4. Vẽ đường thẳng đi qua hai điểm A(0; -3) và B(1; -1). Đường thẳng này chính là đồ thị hàm số y = 2x - 3.

Câu c)

Đề bài: Tìm tọa độ giao điểm của đường thẳng y = 2x - 3 và đường thẳng y = -x + 6.

Lời giải:

Để tìm tọa độ giao điểm của hai đường thẳng y = 2x - 3 và y = -x + 6, ta giải hệ phương trình sau:

y = 2x - 3y = -x + 6
Phương trình 1y = 2x - 3
Phương trình 2y = -x + 6

Thay y = 2x - 3 vào phương trình y = -x + 6, ta được:

2x - 3 = -x + 6

3x = 9

x = 3

Thay x = 3 vào phương trình y = 2x - 3, ta được:

y = 2(3) - 3 = 3

Vậy, tọa độ giao điểm của hai đường thẳng là (3; 3).

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc nhất, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa và các tính chất của hàm số bậc nhất.
  • Biết cách xác định hệ số góc và tung độ gốc của hàm số.
  • Biết cách vẽ đồ thị hàm số bậc nhất.
  • Biết cách tìm tọa độ giao điểm của hai đường thẳng.
  • Rèn luyện kỹ năng giải các bài toán thực tế liên quan đến hàm số.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ hiểu rõ hơn về cách giải bài 28 trang 21 Sách bài tập Toán 9 - Cánh Diều tập 1. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9