Bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán thực tế liên quan đến hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để xác định hệ số góc và đường thẳng song song, vuông góc.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một xí nghiệp đã sản xuất hai loại hộp giấy có dạng hình hộp chữ nhật để đựng đồ ăn. Hộp giấy loại I có chiều rộng là x (cm), chiều dài hơn chiều rộng là 9 (cm) chiều cao là 18 (cm) và hộp giấy loại II có chiều rộng là 10 (cm), chiều dài hơn chiều rộng là 5 (cm), chiều cao là x + 1 (cm) với x > 0. Tổng diện tích xung quanh của 25 hộp giấy loại I hơn tổng diện tích xung quanh của 20 hộp giấy loại II không dưới 175 dm2. Tìm giá trị nhỏ nhất của x, biết rằng diện tích giấy dán mép hộp không đáng kể
Đề bài
Một xí nghiệp đã sản xuất hai loại hộp giấy có dạng hình hộp chữ nhật để đựng đồ ăn. Hộp giấy loại I có chiều rộng là x (cm), chiều dài hơn chiều rộng là 9 (cm) chiều cao là 18 (cm) và hộp giấy loại II có chiều rộng là 10 (cm), chiều dài hơn chiều rộng là 5 (cm), chiều cao là x + 1 (cm) với x > 0. Tổng diện tích xung quanh của 25 hộp giấy loại I hơn tổng diện tích xung quanh của 20 hộp giấy loại II không dưới 175 dm2. Tìm giá trị nhỏ nhất của x, biết rằng diện tích giấy dán mép hộp không đáng kể.
Phương pháp giải - Xem chi tiết
Bước 1: Tính tổng diện tích xung quanh của 25 hộp giấy loại I.
Bước 2: Tính tổng diện tích xung quanh của 20 hộp giấy loại II.
Bước 3: Lập và giải bất phương trình.
Lời giải chi tiết
Diện tích xung quanh của 25 hộp giấy loại I là:
\(25.2.\left( {x + x + 9} \right).18 = 900\left( {2x + 9} \right)\) cm2.
Diện tích xung quanh của 20 hộp giấy loại II là:
\(20.2.\left( {10 + 15} \right).\left( {x + 1} \right) = 1000\left( {x + 1} \right)\) cm2.
Vì tổng diện tích xung quanh của 25 hộp giấy loại I hơn tổng diện tích xung quanh của 20 hộp giấy loại II không dưới 175 dm2 nên ta có bất phương trình:
\(\begin{array}{l}900\left( {2x + 9} \right) - 1000\left( {x + 1} \right) \ge 17500\\9\left( {2x + 9} \right) - 10\left( {x + 1} \right) \ge 175\\18x + 81 - 10x - 10 \ge 175\\8x \ge 104\\x \ge 13\end{array}\)
Vậy giá trị nhỏ nhất của x là 13.
Bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1 thuộc chương Hàm số bậc nhất. Bài tập này tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và dễ hiểu cho bài tập này:
Bài 16 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1, chúng ta cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử chúng ta có đường thẳng y = 2x + 3. Để tìm phương trình đường thẳng song song với đường thẳng này, chúng ta cần tìm một đường thẳng có hệ số góc bằng 2. Ví dụ, đường thẳng y = 2x + 5 là một đường thẳng song song với đường thẳng y = 2x + 3.
Để tìm phương trình đường thẳng vuông góc với đường thẳng y = 2x + 3, chúng ta cần tìm một đường thẳng có hệ số góc bằng -1/2. Ví dụ, đường thẳng y = -1/2x + 1 là một đường thẳng vuông góc với đường thẳng y = 2x + 3.
Trong bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1, học sinh có thể gặp các dạng bài tập sau:
Để giải bài tập về hàm số bậc nhất một cách hiệu quả, học sinh nên:
Bài 16 trang 42 sách bài tập Toán 9 Cánh diều tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và dễ hiểu trên đây, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để tìm hiểu thêm về các bài giải Toán 9 và các môn học khác.