Logo Header
  1. Môn Toán
  2. Giải bài 25 trang 61 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 25 trang 61 sách bài tập toán 9 - Cánh diều tập 1

Giải bài 25 trang 61 Sách bài tập Toán 9 - Cánh Diều tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 25 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Tìm điều kiện xác định của mỗi biểu thức: a) \(\sqrt {x + 2024} \) b) \(\sqrt {7x + 1} \) c) \(\sqrt {\frac{1}{{{x^2}}}} \) d) \(\sqrt {\frac{{{x^2} + 1}}{{1 - 2x}}} \) e) \(\sqrt[3]{{{x^2} + 5}}\) g) \(\sqrt[3]{{\frac{1}{{32 - x}}}}\) h) \(\sqrt[3]{{\frac{4}{{x + 3}}}}\) i) \(\sqrt[3]{{\frac{{2024}}{{{x^2} + 10}}}}\)

Đề bài

Tìm điều kiện xác định của mỗi biểu thức:

a) \(\sqrt {x + 2024} \)

b) \(\sqrt {7x + 1} \)

c) \(\sqrt {\frac{1}{{{x^2}}}} \)

d) \(\sqrt {\frac{{{x^2} + 1}}{{1 - 2x}}} \)

e) \(\sqrt[3]{{{x^2} + 5}}\)

g) \(\sqrt[3]{{\frac{1}{{32 - x}}}}\)

h) \(\sqrt[3]{{\frac{4}{{x + 3}}}}\)

i) \(\sqrt[3]{{\frac{{2024}}{{{x^2} + 10}}}}\)

Phương pháp giải - Xem chi tiếtGiải bài 25 trang 61 sách bài tập toán 9 - Cánh diều tập 1 1

Điều kiện xác định của biểu thức: mẫu khác 0 và biểu thức dưới dấu căn bậc hai không âm.

Lời giải chi tiết

a) Điều kiện xác định: \(x + 2024 \ge 0\) hay \(x \ge - 2024\).

b) Điều kiện xác định: \(7x + 1 \ge 0\) hay \(x \ge - \frac{1}{7}\).

c) Điều kiện xác định: \(\frac{1}{{{x^2}}} \ge 0\) hay \(x \ne 0\).

d) Điều kiện xác định: \(\frac{{{x^2} + 1}}{{1 - 2x}} \ge 0\) và \(1 - 2x \ne 0\)

Ta có: \(\frac{{{x^2} + 1}}{{1 - 2x}} \ge 0\) suy ra \(1 - 2x > 0\) (do \({x^2} + 1 > 0\forall x \in R\)), nên \(x < \frac{1}{2}\)

\(1 - 2x \ne 0\) hay \(x \ne \frac{1}{2}\).

e) \(\sqrt[3]{{{x^2} + 5}}\) xác định với mọi số thực \(x\) vì \({x^2} + 5\) xác định với mọi số thực \(x\).

g) Điều kiện xác định: \(32 - x \ne 0\) hay \(x \ne 32.\)

h) Điều kiện xác định: \(x + 3 \ne 0\) hay \(x \ne - 3.\)

i) Điều kiện xác định: mọi số thực \(x\) vì \({x^2} + 10 \ne 0\) với mọi số thực \(x\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 25 trang 61 sách bài tập toán 9 - Cánh diều tập 1 đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 25 trang 61 Sách bài tập Toán 9 - Cánh Diều tập 1: Tổng quan

Bài 25 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1 thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.

Nội dung bài tập

Bài 25 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định hệ số a của hàm số y = ax + b khi biết một điểm thuộc đồ thị hàm số.
  • Tìm giá trị của b khi biết hệ số a và một điểm thuộc đồ thị hàm số.
  • Viết phương trình đường thẳng đi qua hai điểm cho trước.
  • Xác định xem một điểm có thuộc đồ thị hàm số hay không.

Phương pháp giải

Để giải bài 25 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1, học sinh cần nắm vững các kiến thức sau:

  1. Định nghĩa hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  2. Đồ thị hàm số bậc nhất: Đồ thị hàm số bậc nhất là một đường thẳng.
  3. Cách xác định đường thẳng đi qua hai điểm: Sử dụng công thức tính hệ số góc và phương trình đường thẳng.
  4. Cách kiểm tra một điểm thuộc đường thẳng: Thay tọa độ điểm vào phương trình đường thẳng. Nếu phương trình thỏa mãn, điểm thuộc đường thẳng.

Lời giải chi tiết

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 25 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1:

Câu a)

Để xác định hệ số a của hàm số y = ax + b khi biết một điểm thuộc đồ thị hàm số, ta thay tọa độ điểm đó vào phương trình hàm số và giải phương trình để tìm a.

Ví dụ: Cho hàm số y = ax + b và điểm A(1; 2). Thay x = 1 và y = 2 vào phương trình, ta được: 2 = a * 1 + b. Từ đó, ta có thể giải phương trình để tìm a.

Câu b)

Tương tự như câu a, để tìm giá trị của b khi biết hệ số a và một điểm thuộc đồ thị hàm số, ta thay tọa độ điểm đó và giá trị của a vào phương trình hàm số và giải phương trình để tìm b.

Câu c)

Để viết phương trình đường thẳng đi qua hai điểm cho trước, ta thực hiện các bước sau:

  1. Tính hệ số góc m của đường thẳng: m = (y2 - y1) / (x2 - x1).
  2. Sử dụng công thức phương trình đường thẳng: y - y1 = m(x - x1).
  3. Thay tọa độ một trong hai điểm vào phương trình để tìm phương trình đường thẳng.

Câu d)

Để xác định xem một điểm có thuộc đồ thị hàm số hay không, ta thay tọa độ điểm vào phương trình hàm số. Nếu phương trình thỏa mãn, điểm thuộc đồ thị hàm số. Ngược lại, điểm không thuộc đồ thị hàm số.

Bài tập tương tự

Để củng cố kiến thức về hàm số bậc nhất, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 26 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1.
  • Bài 27 trang 62 sách bài tập Toán 9 - Cánh Diều tập 1.

Kết luận

Bài 25 trang 61 sách bài tập Toán 9 - Cánh Diều tập 1 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và cách vận dụng kiến thức vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi làm bài tập Toán 9.

Khái niệmGiải thích
Hàm số bậc nhấty = ax + b (a ≠ 0)
Hệ số góca trong phương trình y = ax + b
Đồ thị hàm sốĐường thẳng

Tài liệu, đề thi và đáp án Toán 9