Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.
Đề bài
Ở Hình 9 biết ABCDEF là lục giác đều, chứng minh rằng lục giác MNPQRS cũng là lục giác đều.
Phương pháp giải - Xem chi tiết
Dựa vào đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
Lời giải chi tiết
Lục giác ABCDEF là lục giác đều nên AB = BC = CD = DE = EF = FA và
\(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAF} = \widehat {FAB}\).
Ta cũng có tổng 6 góc của lục giác đều ABCDEF bằng tổng các góc của hai tứ giác ABCD và AFED, tức là bằng 2.360° = 720°.
Do đó:
\(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAF} = \widehat {FAB} = \frac{{{{720}^o}}}{6} = {120^o}.\)
Xét ∆AFB cân tại A (do AB = AF) ta có:
\(\widehat {ABF} = \widehat {AFB} = \frac{{{{180}^o} - \widehat {FAB}}}{2} = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\)
Hay \(\widehat {ABS} = \widehat {AFR} = {30^o}\).
Tương tự, đối với ∆ABC cân tại B ta có: \(\widehat {BAC} = \widehat {BCA} = {30^o}\) hay \(\widehat {BAS} = {30^o}\).
Do đó ta có \(\widehat {ABS} = \widehat {BAS} = {30^o}\). Nên ∆ABS cân tại S.
Suy ra \(\widehat {ASB} = {180^o} - 2\widehat {BAS} = {180^o} - {2.30^o} = {120^o}\).
Khi đó, \(\widehat {RSM} = \widehat {ASB} = {120^o}\)(đối đỉnh).
Chứng minh tương tự, ta được:
\(\widehat {RSM} = \widehat {SMN} = \widehat {MNP} = \widehat {NPQ} = \widehat {PQR} = \widehat {QRS} = {120^o}\). (1)
Ta có: \(\widehat {BSA} + \widehat {BSM} = {180^o}\) (kề bù)
Suy ra \(\widehat {BSM} = {180^o} - \widehat {BSA} = {180^o} - {120^o} = {60^o}\).
Ta cũng có: \(\widehat {BMS} = {180^o} - \widehat {BMC} = {180^o} - {120^o} = {60^o}\).
Do đó ∆BSM là tam giác cân, lại có \(\widehat {BSM} = {60^o}\)nên ∆BSM là tam giác đều.
Suy ra SB = SM = BM.
Chứng minh tương tự ta có ∆SAR là tam giác đều nên SA = SR = AR.
Do ∆ABS cân tại S nên SA = SB.
Khi đó, RS = SM.
Chứng minh tương tự, ta được:
RS = SM = MN = NP = PQ = QR. (2)
Từ (1) và (2) suy ra lục giác MNPQRS là lục giác đều.
Bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, bao gồm việc xác định hàm số, vẽ đồ thị hàm số, và tìm các điểm đặc biệt của đồ thị.
Bài 8 bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2 một cách dễ dàng, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng dạng bài tập:
Cho hai điểm A(1; 2) và B(2; 4). Hãy xác định hàm số bậc nhất y = ax + b đi qua hai điểm này.
Giải:
Thay tọa độ điểm A(1; 2) vào hàm số y = ax + b, ta được: 2 = a(1) + b => a + b = 2 (1)
Thay tọa độ điểm B(2; 4) vào hàm số y = ax + b, ta được: 4 = a(2) + b => 2a + b = 4 (2)
Giải hệ phương trình (1) và (2), ta được: a = 2 và b = 0
Vậy hàm số bậc nhất cần tìm là y = 2x.
Vẽ đồ thị hàm số y = -x + 3.
Giải:
Xác định hai điểm thuộc đồ thị hàm số:
Vẽ đường thẳng đi qua hai điểm A(0; 3) và B(1; 2) trên mặt phẳng tọa độ. Đó chính là đồ thị hàm số y = -x + 3.
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2 một cách dễ dàng và hiệu quả. Chúc bạn học tốt và đạt kết quả cao trong môn toán!