Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Cho hai đường tròn (O; 17cm) và (O'; 10cm) cắt nhau tại A và B. Biết OO' = 21cm. Tính độ dài đoạn thẳng AB.
Đề bài
Cho hai đường tròn (O; 17cm) và (O'; 10cm) cắt nhau tại A và B. Biết OO' = 21cm. Tính độ dài đoạn thẳng AB.
Phương pháp giải - Xem chi tiết
Bước 1: Chứng minh OO’ là đường trung trực của AB, từ đó suy ra \(AH = BH = \frac{{AB}}{2}\) .
Bước 2: Tính \(O'H = OO' - OH = 21 - OH\).
Bước 3: Áp dụng định lý Pythagore trong tam giác vuông AOH và O’AH để biểu diễn AH thông qua OH và tính OH.
Bước 4: Tính \(AB = 2AH\).
Lời giải chi tiết
Gọi H là giao điểm của OO’ và AB.
Ta có: \(OA = OB( = 17cm)\)nên O thuộc đường trung trực của AB;
\(O'A = O'B( = 10cm)\) nên O’ thuộc đường trung trực của AB.
Suy ra OO’ là đường trung trực của AB, do đó \(AH = BH = \frac{{AB}}{2}\) và \(OO' \bot AB\) tại H.
Ta có \(O'H = OO' - OH = 21 - OH\)
Mặt khác: Áp dụng định lý Pythagore trong tam giác vuông AOH và O’AH ta được:
\(O{A^2} - O{H^2} = O'{A^2} - O'{H^2}( = A{H^2})\)
Nên \({17^2} - O{H^2} = {10^2} - {\left( {21 - OH} \right)^2}\) hay \({17^2} - O{H^2} = {10^2} - \left( {{{21}^2} - 42OH + O{H^2}} \right)\) do đó \(OH = 15\)cm.
Áp dụng định lý Pythagore trong tam giác vuông OAH ta có: \(AH = \sqrt {O{A^2} - O{H^2}} = \sqrt {{{17}^2} - {{15}^2}} = 8\)cm.
Vậy \(AB = 2AH = 2.8 = 16\)cm.
Bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về hệ số góc, giao điểm của đồ thị hàm số và ứng dụng của chúng trong việc tìm nghiệm của phương trình.
Bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Ví dụ 1: Cho hàm số y = 2x + 1. Hãy xác định hệ số góc của đường thẳng này.
Giải: Hệ số góc của đường thẳng y = 2x + 1 là 2.
Ví dụ 2: Tìm giao điểm của hai đường thẳng y = x + 2 và y = -x + 4.
Giải: Để tìm giao điểm, ta giải hệ phương trình:
y = x + 2
y = -x + 4
Thay y = x + 2 vào phương trình thứ hai, ta được: x + 2 = -x + 4. Giải phương trình này, ta được x = 1. Thay x = 1 vào phương trình y = x + 2, ta được y = 3. Vậy giao điểm của hai đường thẳng là (1; 3).
Khi giải bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1, bạn cần lưu ý những điều sau:
Để hiểu sâu hơn về hàm số và ứng dụng của chúng, bạn có thể tham khảo thêm các tài liệu sau:
Bài 4 trang 102 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!
Dạng bài tập | Phương pháp giải |
---|---|
Xác định hệ số góc | Sử dụng công thức y = ax + b, trong đó a là hệ số góc. |
Tìm giao điểm | Giải hệ phương trình hai ẩn. |
Giải phương trình bậc hai | Vẽ đồ thị hàm số và tìm giao điểm với trục hoành. |