Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 9 trang 103 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.
Cho đường tròn (O; 3 cm) và (O'; 2 cm) tiếp xúc ngoài với nhau tại A. Một đường thẳng đi qua A cắt (O) và (O') lần lượt tại B và C (B và C khác A).
Đề bài
Cho đường tròn (O; 3 cm) và (O'; 2 cm) tiếp xúc ngoài với nhau tại A. Một đường thẳng đi qua A cắt (O) và (O') lần lượt tại B và C (B và C khác A).
Phương pháp giải - Xem chi tiết
a) Chứng minh OB // O’C.
b) Cho AB = 5 cm. Tính độ dài đoạn thẳng AC.
Lời giải chi tiết
a)Xét (O) có \(OA = OB( = 3cm)\) nên tam giác OAB cân tại O, suy ra \(\widehat B = \widehat {OAB}\)
Xét (O’) có \(O'A = O'B( = 2cm)\) nên tam giác O’AC cân tại O, suy ra \(\widehat C = \widehat {O'AC}\)
Mặt khác \(\widehat {OAB} = \widehat {O'AC}\) (đối đỉnh) nên \(\widehat B = \widehat C\).
Mà 2 góc này ở vị trí so le trong, suy ra OB // O’C.
b) Xét tam giác OAB có OB // O’C suy ra \(\frac{{OA}}{{O'A}} = \frac{{AB}}{{AC}}\) (định lý Thales)
hay \(CA = \frac{{O'A.AB}}{{OA}} = \frac{{2.5}}{3} = \frac{{10}}{3}\)cm.
Bài 9 trang 103 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, bao gồm việc xác định hàm số, vẽ đồ thị hàm số, và tìm các điểm đặc biệt của đồ thị.
Bài 9 trang 103 sách bài tập toán 9 - Cánh diều tập 1 thường bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 9 trang 103 sách bài tập toán 9 - Cánh diều tập 1 một cách dễ dàng, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng dạng bài tập:
Để xác định hàm số bậc nhất y = ax + b, bạn cần tìm các hệ số a và b. Thông thường, đề bài sẽ cung cấp các thông tin như:
Sau khi có đủ thông tin, bạn có thể sử dụng các công thức và phương pháp đại số để tìm ra giá trị của a và b.
Để vẽ đồ thị hàm số y = ax + b, bạn cần xác định ít nhất hai điểm thuộc đồ thị. Bạn có thể chọn hai giá trị tùy ý của x và tính giá trị tương ứng của y. Sau đó, vẽ đường thẳng đi qua hai điểm này. Lưu ý rằng:
Để tìm giao điểm của hai đường thẳng y = a1x + b1 và y = a2x + b2, bạn cần giải hệ phương trình sau:
{ y = a1x + b1
y = a2x + b2
Có nhiều phương pháp để giải hệ phương trình này, như phương pháp thế, phương pháp cộng đại số, hoặc phương pháp đồ thị.
Khi giải các bài toán thực tế liên quan đến hàm số bậc nhất, bạn cần:
Ví dụ 1: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số đi qua hai điểm A(1; 2) và B(-1; 0).
Giải: Thay tọa độ của hai điểm A và B vào phương trình y = ax + b, ta được hệ phương trình:
{ 2 = a + b
0 = -a + b
Giải hệ phương trình này, ta được a = 1 và b = 1. Vậy hàm số cần tìm là y = x + 1.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập toán 9 - Cánh diều tập 1 hoặc trên các trang web học toán online.
Bài 9 trang 103 sách bài tập toán 9 - Cánh diều tập 1 là một bài tập quan trọng giúp bạn ôn tập và củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!