Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 28 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?
Đề bài
Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?
Phương pháp giải - Xem chi tiết
Dựa vào: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
Lời giải chi tiết
Vì ABCDEF là lục giác đều nên nó có tất các cạnh bằng nhau và tất cả các góc đều bằng \(\frac{{{{2.360}^o}}}{6} = {120^o}\).
Ta có \(\widehat {ABC} + \widehat {AB{A_2}} + \widehat {{A_2}B{A_3}} + \widehat {CB{A_3}} = {360^o}\).
Suy ra:
\(\widehat {{A_2}B{A_3}} = {360^o} - \widehat {ABC} - \widehat {AB{A_2}} - \widehat {CB{A_3}}\)
\(= {360^o} - {120^o} - {90^o} - {90^o} = {60^o}\).
Do BA2 = AB (do BAA1A2 là hình vuông); BA3 = BC (do CBA3A4) và AB = CD nên BA2 = BA3.
Do đó BA2A3 là tam giác đều.
Từ đó suy ra: A2A3 = BA2 và \(\widehat {B{A_2}{A_3}} = {60^o}\).
Do đó A2A3 = BA (cùng bằng BA2) và \(\widehat {{A_1}{A_2}{A_3}} = \widehat {{A_1}{A_2}B} + \widehat {B{A_2}{A_3}} = {90^o} + {60^o} = {150^o}\).
Tương tự, ta chứng minh được đa giác A1A2A3…A11A12 có các góc đều bằng 150° và các cạnh đều bằng nhau và bằng BA.
Do đó, đa giác A1A2A3…A11A12 là đa giác đều.
Bài 28 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học về hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, hoặc chứng minh các tính chất liên quan đến hàm số.
Bài 28 thường bao gồm các dạng bài tập sau:
Để giải bài 28 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài tập: Tìm phương trình đường thẳng đi qua hai điểm A(1; 2) và B(-1; 0).
Giải:
Vậy phương trình đường thẳng đi qua hai điểm A(1; 2) và B(-1; 0) là y = x + 1.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ tiếp tục cập nhật thêm nhiều lời giải chi tiết cho các bài tập Toán 9 khác. Hãy theo dõi chúng tôi để không bỏ lỡ bất kỳ thông tin hữu ích nào!
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 28 trang 114 sách bài tập Toán 9 - Cánh Diều tập 2. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!