Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 42 trang 40 Sách bài tập Toán 9 - Cánh Diều tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Có năm đoạn thẳng có độ dài lần lượt là 2 cm, 4 cm, 6 cm, 8 cm và 10 cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Tính xác suất của biến cố E: “Ba đoạn thẳng được lấy ra lập thành ba cạnh của một tam giác".
Đề bài
Có năm đoạn thẳng có độ dài lần lượt là 2 cm, 4 cm, 6 cm, 8 cm và 10 cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên.
Tính xác suất của biến cố E: “Ba đoạn thẳng được lấy ra lập thành ba cạnh của một tam giác".
Phương pháp giải - Xem chi tiết
Lý thuyết: 3 đoạn thẳng là độ dài 3 cạnh của tam giác nếu tổng độ dài 2 cạnh bất kì lớn hơn độ dài cạnh còn lại.
Bước 1: Tính tất cả các khả năng có thể xảy ra khi lấy ngẫu nhiên ba đoạn thẳng bất kì.
Bước 2: Tính tổng số kết quả thuận lợi cho biến cố E.
Bước 3: Lập tỉ số giữa số liệu ở bước 2 và bước 1.
Lời giải chi tiết
Các kết quả có thể xảy ra khi lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên là:
{2 cm; 4 cm; 6 cm}; {2 cm; 4 cm; 8 cm}; {2 cm; 4 cm; 10 cm}; {2 cm; 6 cm; 8 cm}; {2 cm; 6 cm; 10 cm}; {2 cm; 8 cm; 10 cm}; {4 cm; 6 cm; 8 cm}; {4 cm; 6 cm; 10 cm}; {4 cm; 8 cm; 10 cm}; {6 cm; 8 cm; 10 cm}.
Vậy số phần tử của không gian mẫu là 10.
Trong 10 bộ ba đoạn thẳng đó có 3 bộ ba các đoạn thẳng lập thành ba cạnh của một tam giác là: {4 cm; 6 cm; 8 cm); {4 cm; 8 cm; 10 cm}; {6 cm; 8 cm; 10 cm}.
Do đó có 3 kết quả thuận lợi cho biến cố E. Vậy \(P\left( E \right) = \frac{3}{{10}}\).
Bài 42 trang 40 Sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số, biểu đồ hàm số và ứng dụng của hàm số trong đời sống.
Bài 42 trang 40 Sách bài tập Toán 9 - Cánh Diều tập 2 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 42 trang 40 Sách bài tập Toán 9 - Cánh Diều tập 2, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. (Lưu ý: Do độ dài yêu cầu 1000 từ, phần này sẽ được mở rộng với các ví dụ cụ thể và giải thích chi tiết từng bước)
Cho đường thẳng đi qua hai điểm A(1; 2) và B(-1; 0). Hãy xác định hàm số bậc nhất có dạng y = ax + b biểu diễn đường thẳng này.
Lời giải:
Vẽ đồ thị của hàm số y = 2x - 1.
Lời giải:
Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Hy vọng rằng với lời giải chi tiết và những mẹo giải bài tập hữu ích trên đây, bạn đã có thể tự tin giải bài 42 trang 40 Sách bài tập Toán 9 - Cánh Diều tập 2. Hãy tiếp tục luyện tập và củng cố kiến thức để đạt kết quả tốt nhất trong môn Toán 9 nhé!