Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 13 trang 106 một cách cẩn thận, kèm theo các bước giải chi tiết và dễ theo dõi.
Cho hình thang vuông ABCD (\(\widehat A = \widehat D = 90^\circ \)) có AB = 4 cm, BC = 13 cm, CD = 9 cm. a) Tính độ dài đoạn thẳng AD. b) Đường thẳng AD có tiếp xúc với đường tròn đường kính BC hay không? Vì sao?
Đề bài
Cho hình thang vuông ABCD (\(\widehat A = \widehat D = 90^\circ \)) có AB = 4 cm, BC = 13 cm, CD = 9 cm.
a) Tính độ dài đoạn thẳng AD.
b) Đường thẳng AD có tiếp xúc với đường tròn đường kính BC hay không? Vì sao?
Phương pháp giải - Xem chi tiết
a) Bước 1: Chứng minh ABHD là hình chữ nhật để suy ra \(BH = AD\) và \(AB = DH = 4\)cm.
Bước 2: Áp dụng định lý Pythagore trong tam giác BHC để tính BH.
b) Bước 1: Chứng minh KMHD là hình chữ nhật để tính được KM.
Bước 2: Chứng minh MI là đường trung bình của tam giác BHC để tính MI.
Bước 3: \(KI = KM + MI\).
Bước 4: So sánh KI với R để xác định vị trí củ AD với (I).
Lời giải chi tiết
a) Kẻđường cao BH của hình thang ABCD.
Xét ABHD có \(\widehat A = \widehat D = \widehat {DHB} = 90^\circ \) nên ABHD là hình chữ nhật,
suy ra \(BH = AD\) và \(AB = DH = 4\)cm.
Ta lại có \(HC = DC - DH = 9 - 4 = 5\)cm.
Áp dụng định lý Pythagore trong tam giác BHC vuông tại H:
\(BH = \sqrt {B{C^2} - H{C^2}} = \sqrt {{{13}^2} - {5^2}} = 12\)cm.
Vậy \(BH = AD = 4\)cm.
b) Lấy I là trung điểm của BC, do đó I là tâm đường tròn đường kính BC và\(BI = R = \frac{{BC}}{2} = \frac{{13}}{2}\)cm.
Kẻ IK vuông góc với AD tại K, do đó IK = d là khoảng cách từ tâm I đến AD.
Xét HDKM có \(\widehat {MKD} = \widehat D = \widehat {MHD} = 90^\circ \) nên HDKM là hình chữ nhật, suy ra \(DH = KM = 4\)cm.
Ta có \(AD \bot DC;IK \bot AD\) nên \(IK//DC\). Mà \(M \in IK,H \in DC\) do đó \(MI//HC\).
Xét tam giác BHC có \(MI//HC\), I là trung điểm của BC nên MI là đường trung bình của tam giác BHC. Suy ra \(MI = \frac{{HC}}{2} = \frac{5}{2}\)cm.
Ta có \(IK = d = KM + MI = 4 + \frac{5}{2} = 6,5\)cm.
Do \(d = R\left( { = 6,5cm} \right)\) nên AD tiếp xúc với đường tròn đường kính BC.
Bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1 thuộc chương trình học toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế liên quan đến hàm số.
Bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi.
...
...
...
Để giải bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp bạn giải bài tập về hàm số bậc nhất một cách dễ dàng hơn:
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 13 trang 106 sách bài tập toán 9 - Cánh diều tập 1. Chúc bạn học tập tốt và đạt kết quả cao trong môn toán!
Dạng bài tập | Kiến thức cần nắm vững |
---|---|
Xác định hệ số góc | Công thức tính hệ số góc |
Vẽ đồ thị | Cách xác định các điểm thuộc đồ thị |