Bài 27 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 27 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho phương trình \({x^2} + 2\left( {2m + 1} \right)x - 4{m^2} - 1 = 0.\) a) Chứng tỏ rằng phương trình luôn có hai nghiệm \({x_1};{x_2}\) với mọi giá trị của m. b) Tìm biểu thức liên hệ giữa hai nghiệm \({x_1};{x_2}\) không phụ thuộc vào giá trị của m.
Đề bài
Cho phương trình \({x^2} + 2\left( {2m + 1} \right)x - 4{m^2} - 1 = 0.\)
a) Chứng tỏ rằng phương trình luôn có hai nghiệm \({x_1};{x_2}\) với mọi giá trị của m.
b) Tìm biểu thức liên hệ giữa hai nghiệm \({x_1};{x_2}\) không phụ thuộc vào giá trị của m.
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta \ge 0\) với mọi \(m \in \mathbb{R}\) hoặc \(\Delta ' \ge 0\) với mọi \(m \in \mathbb{R}\).
b) Bước 1: Áp dụng định lý Viète để tính \({x_1} + {x_2};{x_1}{x_2}\).
Bước 2: Biến đổi biểu thức để không chứa m nữa (có thể bình phương, nhân với một số,…).
Lời giải chi tiết
Phương trình có các hệ số \(a = 1;b = 2\left( {2m + 1} \right);c = - 4{m^2} - 1\), do đó \(b' = \frac{b}{2} = 2m + 1\).
Ta có:
\(\Delta ' = {\left( {2m + 1} \right)^2} - 1.\left( { - 4{m^2} - 1} \right) \\= {\left( {2m + 1} \right)^2} + 4{m^2} + 1.\)
Do \({\left( {2m + 1} \right)^2} \ge 0;4{m^2} \ge 0;1 > 0\) nên \({\left( {2m + 1} \right)^2} + 4{m^2} + 1 > 0\) với mọi \( m \in \mathbb{R}\) hay \(\Delta ' \ge 0\) với mọi \(m \in \mathbb{R}\).
Vì \(\Delta ' \ge 0\) nên phương trình luôn có 2 nghiệm với mọi giá trị của m.
b) Vì phương trình luôn có 2 nghiệm nên áp dụng định lý Viète ta có:
\({x_1} + {x_2} = - 2\left( {2m + 1} \right);{x_1}.{x_2} = - 4{m^2} - 1.\)
Ta có:
\({\left( {{x_1} + {x_2} + 2} \right)^2} \\= {\left[ { - 2\left( {2m + 1} \right) + 2} \right]^2} \\= 16{m^2}\)
và \(4.{x_1}.{x_2} = 4\left( { - 4{m^2} - 1} \right) = - 16{m^2} - 4\)
Suy ra
\({\left( {{x_1} + {x_2} + 2} \right)^2} + 4.{x_1}.{x_2} \\= 16{m^2} - 16{m^2} - 4 = -4.\)
Vậy ta có hệ thức \({\left( {{x_1} + {x_2} + 2} \right)^2} + 4.{x_1}.{x_2} = -4\) không phụ thuộc vào giá trị của m.
Bài 27 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 thuộc chương trình học về hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 27. Giả sử bài 27 yêu cầu giải một bài toán liên quan đến việc tìm giao điểm của hai đường thẳng hoặc tìm điều kiện để một đường thẳng cắt parabol. Dưới đây là một ví dụ minh họa:
Cho hàm số y = 2x + 1 và y = x² - 3x + 2. Tìm tọa độ giao điểm của hai đồ thị hàm số này.
Giải:
Ngoài dạng bài tập tìm giao điểm, bài 27 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 có thể xuất hiện các dạng bài tập sau:
Để giải các dạng bài tập này, học sinh cần nắm vững các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử Toán 9.
Bài 27 trang 71 Sách bài tập Toán 9 - Cánh Diều tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.