Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 11 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 11 trang 82 Sách bài tập Toán 8 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 11 trang 82 sách bài tập Toán 8 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúng tôi cam kết mang đến những tài liệu học tập chất lượng, được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm.

Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho (frac{{MB}}{{MA}} = frac{1}{3}), N là điểm trên cạnh BC sao cho (frac{{NB}}{{NC}} = frac{1}{3}.)

Đề bài

Cho tam giác ABC. Giả sử M là điểm trên cạnh AB sao cho \(\frac{{MB}}{{MA}} = \frac{1}{3}\), N là điểm trên cạnh BC sao cho \(\frac{{NB}}{{NC}} = \frac{1}{3}.\)

a) Chứng minh MN//AC và \(MN = \frac{1}{4}AC\).

b) Gọi K là giao điểm của AN và CM. Chứng minh \(\frac{{KN}}{{KA}} = \frac{{KM}}{{KC}} = \frac{1}{4}\).

c) Nếu thay điều kiện \(\frac{{MB}}{{MA}} = \frac{1}{3}\) và \(\frac{{NB}}{{NC}} = \frac{1}{3}\) bằng điều kiện CM là phân giác của góc C, AN là phân giác của góc A thì tam giác ABC phải thỏa mãn điều kiện gì để MN//AC?

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống 1

a) + Sử dụng kiến thức định lí Thalés đảo để chứng minh MN//AC: Nếu một đường cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

+ Sử dụng kiến thức định lí (một trường hợp đặc biệt của hai tam giác đồng dạng) để chứng minh hai tam giác đồng dạng: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

b) Sử dụng kiến thức định lí (một trường hợp đặc biệt của hai tam giác đồng dạng) để chứng minh hai tam giác đồng dạng: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

c) Sử dụng tính chất đường phân giác của tam giác để tìm điều kiện của tam giác ABC: Trong một tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn ấy.

Lời giải chi tiết

Giải bài 11 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống 2

a) Xét tam giác ABC có: \(\frac{{MB}}{{MA}} = \frac{{NB}}{{NC}}\left( { = \frac{1}{3}} \right)\) nên MN//AC (định lí Thalés đảo)

Tam giác ABC có: MN//AC nên \(\Delta BMN \backsim \Delta BAC\)

Do đó,\(\frac{{MN}}{{AC}} = \frac{{BM}}{{AB}} = \frac{{BM}}{{BM + MA}} = \frac{{BM}}{{4BM}} = \frac{1}{4}\) nên \(MN = \frac{1}{4}AC\)

b) Tam giác MNK có: MN//AC nên , do đó \(\frac{{KN}}{{KA}} = \frac{{KM}}{{KC}} = \frac{{MN}}{{AC}} = \frac{1}{4}\)

c) Nếu MN//AC thì \(\frac{{MB}}{{MA}} = \frac{{NB}}{{NC}}\) (1)

Vì CM là phân giác của góc BCA trong tam giác ABC nên \(\frac{{MB}}{{MA}} = \frac{{BC}}{{AC}}\) (2)

Vì AN là phân giác của góc BAC trong tam giác ABC nên \(\frac{{NB}}{{NC}} = \frac{{AB}}{{AC}}\) (3)

Từ (1), (2) và (3) ta có: \(\frac{{AB}}{{AC}} = \frac{{BC}}{{AC}}\) nên \(AB = BC\)

Do đó, tam giác ABC cân tại B.

Ngược lại, nếu tam giác ABC cân tại B, CM là phân giác của góc C, AN là phân giác góc A thì dễ thấy MN//AC.

Vậy để MN//AC thì điều kiện là tam giác ABC cân tại B.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 11 trang 82 sách bài tập toán 8 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán lớp 8 trên đề thi toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 11 trang 82 Sách bài tập Toán 8 - Kết nối tri thức: Tổng quan

Bài 11 trang 82 sách bài tập Toán 8 Kết nối tri thức thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình hộp chữ nhật và hình lập phương để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của hai hình này.

Nội dung chi tiết bài 11 trang 82

Bài 11 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình hộp chữ nhật khi biết các kích thước.
  • Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lập phương khi biết độ dài cạnh.
  • Giải các bài toán liên quan đến ứng dụng thực tế của hình hộp chữ nhật và hình lập phương.

Phương pháp giải bài tập

Để giải quyết bài tập này một cách hiệu quả, học sinh cần:

  1. Nắm vững các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của hình hộp chữ nhật và hình lập phương.
  2. Đọc kỹ đề bài, xác định đúng các kích thước của hình.
  3. Áp dụng các công thức một cách chính xác.
  4. Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Ví dụ minh họa

Ví dụ 1: Một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình hộp chữ nhật đó.

Giải:

  • Diện tích xung quanh: 2 * (5 + 3) * 4 = 64 cm2
  • Diện tích toàn phần: 64 + 2 * (5 * 3) = 94 cm2
  • Thể tích: 5 * 3 * 4 = 60 cm3

Ví dụ 2: Một hình lập phương có cạnh 6cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lập phương đó.

Giải:

  • Diện tích xung quanh: 6 * 62 = 216 cm2
  • Diện tích toàn phần: 6 * 62 = 216 cm2
  • Thể tích: 63 = 216 cm3

Lưu ý quan trọng

Khi giải bài tập về hình hộp chữ nhật và hình lập phương, học sinh cần chú ý đến đơn vị đo. Đảm bảo rằng tất cả các kích thước đều được biểu diễn bằng cùng một đơn vị đo trước khi thực hiện các phép tính.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tự giải các bài tập sau:

  • Bài 12 trang 82 sách bài tập Toán 8 Kết nối tri thức
  • Bài 13 trang 82 sách bài tập Toán 8 Kết nối tri thức

Kết luận

Bài 11 trang 82 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng, giúp học sinh hiểu sâu hơn về hình hộp chữ nhật và hình lập phương. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.

HìnhCông thức
Hình hộp chữ nhậtDiện tích xung quanh: 2 * (d + r) * hDiện tích toàn phần: 2 * (d * r + d * h + r * h)Thể tích: d * r * h
Hình lập phươngDiện tích xung quanh: 6 * a2Diện tích toàn phần: 6 * a2Thể tích: a3

Tài liệu, đề thi và đáp án Toán 8