Bài 6.23 trang 10 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về hình học đã học vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.23 này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Hãy cùng theo dõi lời giải chi tiết dưới đây để hiểu rõ cách giải bài tập này nhé!
Cho biểu thức \(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\left( {x \ne 3,x \ne 1,x \ne - 1} \right)\)
Đề bài
Cho biểu thức \(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}}\left( {x \ne 3,x \ne 1,x \ne - 1} \right)\)
a) Rút gọn phân thức \(\frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}}\).
b) Chứng tỏ rằng có thể viết \(P = a + \frac{b}{{x - 3}}\) trong đó a, b là những hằng số.
c) Tìm tập hợp các giá trị nguyên của x để P có giá trị là số nguyên.
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức rút gọn phân thức để chứng minh:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn
+ Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
b) Sử dụng kiến thức trừ hai phân thức cùng mẫu để tính: Trừ các tử thức với nhau và giữ nguyên mẫu thức: \(\frac{A}{M} - \frac{B}{M} = \frac{{A - B}}{M}\)
c) Một phân số là số nguyên khi tử số chia hết cho mẫu số (hay mẫu số là ước của tử số).
Lời giải chi tiết
a) \(\frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} = \frac{{2x - 6}}{{{x^2}\left( {x - 3} \right) - \left( {x - 3} \right)}} = \frac{{2\left( {x - 3} \right)}}{{\left( {{x^2} - 1} \right)\left( {x - 3} \right)}} = \frac{2}{{{x^2} - 1}}\)
b) \(P = \frac{{2x - 6}}{{{x^3} - 3{x^2} - x + 3}} + \frac{{2{x^2}}}{{1 - {x^2}}} - \frac{6}{{x - 3}} = \frac{2}{{{x^2} - 1}} - \frac{{2{x^2}}}{{{x^2} - 1}} - \frac{6}{{x - 3}}\)
\( = \frac{{2 - 2{x^2}}}{{{x^2} - 1}} - \frac{6}{{x - 3}} = \frac{{ - 2\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} - \frac{6}{{x - 3}} = - 2 - \frac{6}{{x - 3}}\)
Vậy viết P dưới dạng \(P = a + \frac{b}{{x - 3}}\), trong đó a, b là những hằng số.
c) Để P có giá trị nguyên thì \(\frac{{ - 6}}{{x - 3}}\) có giá trị nguyên, khi đó \(x - 3\) là ước của 6.
Do đó, \(\left( {x - 3} \right) \in \)Ư(6)\( = \left\{ {1; - 1;2; - 2;3; - 3;6; - 6} \right\}\)
Ta có bảng:
Vậy \(x \in \left\{ {4;\;5;\;2;\;6;\;0;\;9;\; - 3} \right\}\)
Bài 6.23 trang 10 sách bài tập Toán 8 Kết nối tri thức yêu cầu học sinh chứng minh một tính chất liên quan đến hình thang cân. Để giải bài này, chúng ta cần nắm vững các kiến thức về:
Để chứng minh một tính chất hình học, chúng ta thường sử dụng các phương pháp sau:
Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi E là giao điểm của AD và BC. Chứng minh rằng EA = EB.
Chứng minh:
Xét tam giác EAB và tam giác EDC:
Do đó, tam giác EAB = tam giác EDC (g.c.g). Suy ra EA = ED và EB = EC.
Vì ABCD là hình thang cân nên AD = BC. Ta có:
AD = AE + ED và BC = BE + EC.
Mà AE = ED và BE = EC nên AE + ED = BE + EC. Do đó, AD = BC (đpcm).
Khi giải các bài tập hình học, cần chú ý:
Bài tập 6.23 là một ví dụ điển hình về việc áp dụng các tính chất của hình thang cân để giải quyết các bài toán hình học. Để hiểu sâu hơn về hình thang cân, các em có thể tìm hiểu thêm về:
Để rèn luyện thêm kỹ năng giải bài tập hình học, các em có thể thử giải các bài tập sau:
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập 6.23 trang 10 sách bài tập Toán 8 Kết nối tri thức, các em học sinh đã nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán. Chúc các em học tốt!