Bài 6.2 trang 4 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về các phép biến đổi đại số. Bài tập này thường yêu cầu học sinh thực hiện các phép tính, rút gọn biểu thức hoặc chứng minh đẳng thức.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.2 trang 4 sách bài tập Toán 8 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Viết điều kiện xác định của các phân thức sau:
Đề bài
Viết điều kiện xác định của các phân thức sau:
a) \(\frac{{2x + 1}}{{{x^2} - 1}}\)
b) \(\frac{{{x^3} + 1}}{{{x^2} - x + 1}}\)
c) \(\frac{{2{x^2} + 1}}{{3x - 1}}\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức điều kiện xác định của phân thức để tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là \(B \ne 0\)
Lời giải chi tiết
a) Điều kiện xác định của phân thức là \({x^2} - 1 \ne 0\) hay \({x^2} \ne 1\) hay \(x \ne \pm 1\)
b) Điều kiện xác định của phân thức là \({x^2} - x + 1 \ne 0\)
Ta thấy: \({x^2} - x + 1 = {x^2} - 2.x.\frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\) với mọi số thực x.
Do đó, \({x^2} - x + 1 \ne 0\) với mọi số thực x.
Vậy phân thức \(\frac{{{x^3} + 1}}{{{x^2} - x + 1}}\) xác định với mọi số thực x.
c) Điều kiện xác định của phân thức là \(3x - 1 \ne 0\) hay \(x \ne \frac{1}{3}\)
Bài 6.2 trang 4 sách bài tập Toán 8 Kết nối tri thức yêu cầu chúng ta thực hiện các phép tính đa thức. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các quy tắc về cộng, trừ, nhân, chia đa thức, cũng như các hằng đẳng thức đáng nhớ.
Trước khi bắt đầu giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 6.2, chúng ta thường gặp các yêu cầu như:
Bài tập: Rút gọn biểu thức: (2x + 3)(x - 1) - (x + 2)(x - 3)
Giải:
Vậy, biểu thức được rút gọn là: x2 + 2x + 3
Để nắm vững kiến thức về các phép biến đổi đại số, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học toán online để được hướng dẫn chi tiết hơn.
Kiến thức về các phép biến đổi đại số có ứng dụng rất lớn trong nhiều lĩnh vực khác nhau, không chỉ trong toán học mà còn trong các môn khoa học tự nhiên, kỹ thuật và kinh tế. Việc nắm vững kiến thức này sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả hơn.
Bài 6.2 trang 4 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Bằng cách nắm vững các quy tắc và hằng đẳng thức, bạn có thể giải bài tập này một cách dễ dàng và tự tin. Hãy luyện tập thường xuyên để củng cố kiến thức và nâng cao khả năng giải toán của mình.