Bài 6.39 trang 15 Sách bài tập Toán 8 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hình học để giải quyết các vấn đề thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.39 trang 15 Sách bài tập Toán 8 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Biết \(x + y + z = 0\) và \(x,y,z \ne 0.\) Rút gọn biểu thức sau:
Đề bài
Biết \(x + y + z = 0\) và \(x,y,z \ne 0.\) Rút gọn biểu thức sau:
\(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn
+ Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Lời giải chi tiết
Vì \(x + y + z = 0\) nên \(z = - \left( {x + y} \right)\)
Do đó, \({x^2} + {y^2} - {z^2} = {x^2} + {y^2} - {\left( {x + y} \right)^2} = {x^2} + {y^2} - {x^2} - {y^2} - 2xy = - 2xy\)
Khi đó, \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} = \frac{{xy}}{{ - 2xy}} = \frac{{ - 1}}{2}\)
Tương tự ta có, \(\frac{{yz}}{{{y^2} + {z^2} - {x^2}}} = \frac{{ - 1}}{2};\frac{{zx}}{{{z^2} + {x^2} - {y^2}}} = \frac{{ - 1}}{2}\)
Do đó, \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}} = \frac{{ - 1}}{2} + \frac{{ - 1}}{2} + \frac{{ - 1}}{2} = \frac{{ - 3}}{2}\)
Bài 6.39 trang 15 Sách bài tập Toán 8 - Kết nối tri thức thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông để giải quyết các bài toán thực tế. Bài toán này thường yêu cầu học sinh chứng minh các tính chất, tính độ dài đoạn thẳng, góc hoặc diện tích hình.
Trước khi bắt đầu giải bài 6.39, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích đề bài để tìm ra hướng giải phù hợp. Thông thường, việc vẽ hình minh họa sẽ giúp học sinh dễ dàng hình dung bài toán và tìm ra lời giải.
Để giải bài 6.39 trang 15 Sách bài tập Toán 8 - Kết nối tri thức, chúng ta sẽ thực hiện theo các bước sau:
Ví dụ minh họa (giả định đề bài): Cho hình bình hành ABCD, có góc A bằng 60 độ. Gọi E là giao điểm của hai đường chéo AC và BD. Chứng minh rằng tam giác ABE là tam giác cân.
Lời giải:
Ngoài bài 6.39, còn rất nhiều bài tập tương tự trong chương trình Toán 8 yêu cầu học sinh vận dụng kiến thức về hình học. Để giải các bài tập này, học sinh cần nắm vững các kiến thức cơ bản, rèn luyện kỹ năng vẽ hình và phân tích đề bài. Một số dạng bài tập thường gặp bao gồm:
Khi giải bài tập hình học, học sinh cần lưu ý một số điều sau:
Bài 6.39 trang 15 Sách bài tập Toán 8 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ tự tin hơn khi làm bài tập Toán 8.