Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 81 sách bài tập Toán 8 Kết nối tri thức. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày các bước giải một cách rõ ràng và logic nhất.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức Toán 8, tự tin giải các bài tập và đạt kết quả tốt trong học tập.
Cho hàm số \(y = \left( {3m + 1} \right)x - 2m\). a) Tìm điều kiện của m để hàm số đã cho là hàm số bậc nhất.
Đề bài
Cho hàm số \(y = \left( {3m + 1} \right)x - 2m\).
a) Tìm điều kiện của m để hàm số đã cho là hàm số bậc nhất.
b) Tìm m để đồ thị hàm số đã cho là đường thẳng song song với đường thẳng \(y = - 2x + 5\).
c) Với m tìm được ở câu b), hãy vẽ đồ thị của hàm số đã cho.
Phương pháp giải - Xem chi tiết
a) Sử dụng khái niệm hàm số bậc nhất để tìm m: Hàm số bậc nhất là hàm số cho bởi công thức \(y = ax + b,\) trong đó a, b là các số cho trước và \(a \ne 0\)
b) Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để tìm m:
Cho hai đường thẳng \(\left( d \right):y = ax + b\left( {a \ne 0} \right)\,\) và \(\left( {d'} \right):y = a'x + b'\left( {a' \ne 0} \right)\,\). Khi đó, d song song với d’ nếu \(a = a',b \ne b'\)
c) Sử dụng kiến thức về cách vẽ đồ thị hàm số bậc nhất \(y = ax + b\left( {a \ne 0} \right)\) để vẽ đồ thị:
+ Khi \(b = 0\) thì \(y = ax\). Đồ thị của hàm số \(y = ax\) là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; a).
+ Khi \(b \ne 0\), ta thường xác định hai điểm đặc biệt trên đồ thị là giao điểm của đồ thị với hai trục tọa độ như sau:
- Cho \(x = 0\) thì \(y = b\), ta được điểm P(0; b) thuộc trục tung Oy.
- Cho \(y = 0\) thì \(x = \frac{{ - b}}{a}\), ta được điểm \(Q\left( { - \frac{b}{a};0} \right)\) thuộc trục hoành Ox.
- Vẽ đường thẳng đi qua hai điểm P, Q ta được đồ thị của hàm số \(y = ax + b\)
Lời giải chi tiết
a) Hàm số \(y = \left( {3m + 1} \right)x - 2m\) là hàm số bậc nhất khi \(3m + 1 \ne 0\), suy ra \(m \ne \frac{{ - 1}}{3}\).
b) Vì đồ thị hàm số đã cho là đường thẳng song song với đường thẳng \(y = - 2x + 5\) nên \(3m + 1 = - 2\) và \( - 2m \ne 5\)
Suy ra, \(m = - 1\left( {tm} \right)\) và \(m \ne \frac{{ - 5}}{2}\)
Vậy \(m = - 1\)
c) Với \(m = - 1\) ta có: \(y = - 2x + 2\)
Đồ thị hàm số \(y = - 2x + 2\) là đường thẳng đi qua hai điểm \(A\left( {0;2} \right),B\left( {1;0} \right)\)
Đồ thị hàm số:
Bài 8 trang 81 sách bài tập Toán 8 Kết nối tri thức thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các bài toán về tứ giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về tính chất của các loại tứ giác (hình bình hành, hình chữ nhật, hình thoi, hình vuông) để giải quyết các bài toán thực tế.
Bài 8 trang 81 sách bài tập Toán 8 Kết nối tri thức thường bao gồm các dạng bài tập sau:
Để giải bài 8 trang 81 sách bài tập Toán 8 Kết nối tri thức một cách hiệu quả, bạn cần:
Bài toán: Cho tứ giác ABCD có AB = CD, AD = BC. Chứng minh tứ giác ABCD là hình bình hành.
Lời giải:
Xét hai tam giác ABD và CDB, ta có:
Do đó, tam giác ABD = tam giác CDB (c-c-c). Suy ra ∠ABD = ∠CDB và ∠ADB = ∠CBD.
Vì ∠ABD = ∠CDB (cmt) nên AB // CD (hai góc so le trong bằng nhau).
Vì ∠ADB = ∠CBD (cmt) nên AD // BC (hai góc so le trong bằng nhau).
Vậy, tứ giác ABCD là hình bình hành (dấu hiệu nhận biết hình bình hành).
Khi giải các bài tập về tứ giác, bạn cần chú ý:
Để học tốt Toán 8, bạn có thể tham khảo các tài liệu sau:
Bài 8 trang 81 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về tứ giác. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!