Bài 8.22 trang 48 sách bài tập Toán 8 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học về hình học để giải quyết các vấn đề thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.22 trang 48, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Thống kê số vụ tai nạn giao thông trong tháng 8 và tháng 9 vừa qua của thành phố X, ta có bảng sau:
Đề bài
Thống kê số vụ tai nạn giao thông trong tháng 8 và tháng 9 vừa qua của thành phố X, ta có bảng sau:
a) Tính xác suất thực nghiệm của biến cố A: “Ở thành phố X, trong một ngày có nhiều nhất 3 vụ tai nạn giao thông”.
b) Tính xác suất thực nghiệm của biến cố B: “Ở thành phố X, trong một ngày có từ 5 vụ tai nạn giao thông trở lên”.
c) Từ số liệu thống kê trên, hãy dự đoán xem trong 100 ngày tới ở thành phố X:
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức xác suất thực nghiệm của một biến cố để tính: Giả sử trong n lần thực nghiệm hoặc n lần theo dõi (quan sát) một hiện tượng ta thấy biến cố E xảy ra k lần. Khi đó xác suất thực nghiệm của biến cố E bằng \(\frac{k}{n}\), tức là bằng tỉ số giữa số lần xuất hiện biến cố E và số lần thực hiện thực nghiệm hoặc theo dõi hiện tượng đó.
+ Sử dụng mối liên hệ giữa xác suất thực nghiệm với xác suất: Xác suất của biến cố E được ước lượng bằng xác suất thực nghiệm của E: \(P\left( E \right) \approx \frac{k}{n};\)trong đó n là số lần thực nghiệm hay theo dõi một hiện tượng, k là số lần biến cố E xảy ra.
Lời giải chi tiết
a) Trong hai tháng 8 và 9 với 61 ngày có 4 ngày không xảy ra tai nạn giao thông, 9 ngày có 1 vụ tai nạn giao thông, 15 ngày có 2 vụ tai nạn giao thông, 10 ngày có 3 vụ tai nạn giao thông. Do đó, trong 61 ngày quan sát có \(4 + 9 + 10 + 15 = 38\) lần xảy ra biến cố A.
Xác suất của biến cố A là: \(\frac{{38}}{{61}}\)
b) Trong hai tháng 8 và 9 với 61 ngày có 6 ngày có 5 vụ tai nạn giao thông, 4 ngày có 6 vụ tai nạn giao thông, 3 ngày có 7 vụ tai nạn giao thông, 2 ngày có hơn 7 vụ tai nạn giao thông. Do đó, trong 61 ngày quan sát có \(6 + 4 + 3 + 2 = 15\) lần xảy ra biến cố B.
Xác suất của biến cố B là: \(\frac{{15}}{{61}}\)
c) Gọi k là số ngày trong 100 ngày mà xảy ra nhiều nhất 3 vụ tai nạn giao thông.
Ta có: \(\frac{k}{{100}} \approx \frac{{38}}{{61}}\) nên \(k \approx \frac{{38.100}}{{61}} \approx 62,295\)
Do đó, ta dự đoán trong 100 ngày tới có khoảng 62 ngày xảy ra nhiều nhất 3 vụ tai nạn giao thông.
Gọi h là số ngày trong 100 ngày mà có từ 5 vụ tai nạn giao thông trở lên.
Ta có: \(\frac{h}{{100}} \approx \frac{{15}}{{61}}\) nên \(h \approx \frac{{15.100}}{{61}} \approx 24,59\)
Do đó, ta dự đoán trong 100 ngày tới có khoảng 25 ngày mà có từ 5 vụ tai nạn giao thông trở lên.
Bài 8.22 trang 48 sách bài tập Toán 8 - Kết nối tri thức yêu cầu học sinh chứng minh một tính chất liên quan đến hình thang cân. Để giải bài này, chúng ta cần nắm vững các kiến thức về:
Trước khi bắt đầu giải bài, hãy đọc kỹ đề bài và xác định yêu cầu chính. Trong bài 8.22, chúng ta cần chứng minh một tính chất cụ thể của hình thang cân. Kế hoạch giải thường bao gồm:
Đề bài: (Giả sử đề bài là chứng minh hai đường chéo của hình thang cân bằng nhau)
Chứng minh:
Xét hình thang cân ABCD (AB // CD, AD = BC). Gọi O là giao điểm của hai đường chéo AC và BD.
Ta có:
Do đó, ΔADC ≅ ΔCBA (c-g-c)
Suy ra: AC = BD (hai cạnh tương ứng)
Vậy, hai đường chéo của hình thang cân bằng nhau.
Ngoài bài 8.22, còn rất nhiều bài tập tương tự về hình thang cân. Các bài tập này thường yêu cầu:
Để giải các bài tập này, bạn cần:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 8.22 trang 48 sách bài tập Toán 8 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hình thang cân và các tính chất của nó. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ tự tin hơn trong việc học Toán 8.
Khái niệm | Định nghĩa/Tính chất |
---|---|
Hình thang cân | Hình thang có hai cạnh đáy song song và hai cạnh bên bằng nhau. |
Tính chất hình thang cân | Hai góc kề một cạnh đáy bằng nhau, hai đường chéo bằng nhau. |