Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 8 sách Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 7 trang 81, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và kèm theo các giải thích chi tiết để bạn có thể hiểu được bản chất của vấn đề.

Quãng đường AC gồm hai đoạn thẳng AB và BC. Đoạn thẳng BC dài hơn đoạn thẳng AB là 60km. Một ô tô đi từ A đến B với vận tốc 60km/h,

Đề bài

Quãng đường AC gồm hai đoạn thẳng AB và BC. Đoạn thẳng BC dài hơn đoạn thẳng AB là 60km. Một ô tô đi từ A đến B với vận tốc 60km/h, rồi tiếp tục đi từ B đến C với vận tốc 50km/h. Tính quãng đường AC biết thời gian đi trên đoạn đường AB ít hơn thời gian đi trên đoạn đường BC là 1 giờ 30 phút.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống 1

Sử dụng kiến thức về các bước giải một bài toán bằng cách lập phương trình để giải bài:

Bước 1: Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình.

Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

Gọi x (km) là chiều dài quãng đường AB. Điều kiện: \(x > 0\)

Khi đó, chiều dài quãng đường BC là: \(x + 60\left( {km} \right)\)

Thời gian đi trên quãng đường AB là: \(\frac{x}{{60}}\) (giờ)

Thời gian đi trên quãng đường BC là: \(\frac{{x + 60}}{{50}}\) (giờ)

Vì thời gian đi trên đoạn đường AB ít hơn thời gian đi trên đoạn đường BC là 1 giờ 30 phút\( = \frac{3}{2}\) giờ nên ta có phương trình: \(\frac{{x + 60}}{{50}} - \frac{x}{{60}} = \frac{3}{2}\)

\(\frac{{6\left( {x + 60} \right)}}{{300}} - \frac{{5x}}{{300}} = \frac{{450}}{{300}}\)

\(6x + 360 - 5x = 450\)

\(x = 90\) (thỏa mãn)

Chiều dài quãng đường AB là 90km, chiều dài quãng đường BC là \(90 + 60 = 150\left( {km} \right)\)

Vậy chiều dài quãng đường AC là: \(90 + 150 = 240\left( {km} \right)\)

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán 8 trên học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức: Tổng quan

Bài 7 trang 81 sách bài tập toán 8 Kết nối tri thức thuộc chương trình học toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của hình thang cân, cũng như các phương pháp chứng minh một tứ giác là hình thang cân.

Nội dung bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Chứng minh một tứ giác là hình thang cân dựa trên các điều kiện cho trước (ví dụ: hai cạnh đáy song song và hai cạnh bên bằng nhau).
  • Dạng 2: Tính độ dài các cạnh, đường cao, hoặc góc của hình thang cân khi biết một số yếu tố.
  • Dạng 3: Vận dụng tính chất của hình thang cân để giải các bài toán liên quan đến thực tế.

Hướng dẫn giải chi tiết bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức

Để giải bài 7 trang 81 một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và những điều cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, chú thích các yếu tố đã cho.
  3. Phân tích bài toán: Xác định mối liên hệ giữa các yếu tố đã cho và những điều cần tìm.
  4. Lựa chọn phương pháp giải: Chọn phương pháp giải phù hợp với từng dạng bài tập.
  5. Thực hiện giải bài: Trình bày lời giải một cách rõ ràng, logic và đầy đủ.
  6. Kiểm tra lại kết quả: Đảm bảo kết quả của bạn là chính xác và hợp lý.

Ví dụ minh họa giải bài 7 trang 81 sách bài tập toán 8 - Kết nối tri thức

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.

Lời giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Ta có: DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.

Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.

Suy ra: AH = √29.75 ≈ 5.45cm.

Vậy, đường cao của hình thang là khoảng 5.45cm.

Mẹo giải bài tập hình thang cân

  • Sử dụng tính chất đối xứng: Hình thang cân có tính chất đối xứng qua đường trung bình, do đó bạn có thể tận dụng tính chất này để giải quyết bài toán.
  • Kẻ đường cao: Kẻ đường cao từ đỉnh của đáy lớn xuống đáy nhỏ (hoặc ngược lại) để tạo ra các tam giác vuông, từ đó áp dụng các định lý về tam giác vuông để giải quyết bài toán.
  • Sử dụng định lý Pitago: Định lý Pitago là công cụ hữu ích để tính độ dài các cạnh của tam giác vuông.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Hãy tìm kiếm các bài tập có độ khó tăng dần để thử thách bản thân và nâng cao khả năng giải quyết vấn đề.

Kết luận

Bài 7 trang 81 sách bài tập toán 8 Kết nối tri thức là một bài tập quan trọng giúp bạn hiểu rõ hơn về hình thang cân và các tính chất của nó. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 8