Chào mừng các em học sinh đến với bài giải bài 9.49 trang 63 sách bài tập Toán 8 - Kết nối tri thức. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Hãy cùng chúng tôi khám phá lời giải bài tập này ngay nhé!
Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H).
Đề bài
Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:
a) $\Delta ANP\backsim \Delta HBA$ và $\Delta MCN\backsim \Delta MPB$;
b) \(\frac{{MB}}{{MC}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{PB}} = 1\)
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh tam giác đồng dạng: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
b) Sử dụng định lí Thalès để chứng minh: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.
Lời giải chi tiết
Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = {90^0}\)
Mà \(\widehat {BAC} + \widehat {PAN} = {180^0}\) (hai góc kề bù)
Do đó \(\widehat {PAN} = {90^0}\)
Vì \(AH \bot BC\) (do AH là đường cao của tam giác ABC) nên \(\widehat {AHB} = \widehat {AHC} = {90^0}\)
Vì \(MN \bot BC\) nên \(\widehat {NMC} = \widehat {NMB} = {90^0}\)
Vì \(MN \bot BC\), \(AH \bot BC\) nên MN//AH
Do đó, \(\widehat P = \widehat {HAB}\) (hai góc đồng vị)
Tam giác ANP và tam giác HBA có:
\(\widehat {NAP} = \widehat {AHB} = {90^0},\)\(\widehat P = \widehat {HAB}\) (cmt)
Do đó, $\Delta ANP\backsim \Delta HBA\left( g-g \right)$
Tam giác MCN và tam giác MPB có:
\(\widehat {NMC} = \widehat {NMB} = {90^0},\widehat C = \widehat P\) (cùng phụ với góc B)
Do đó, $\Delta MCN\backsim \Delta MPB\left( g-g \right)$
b) Ta có: \(\frac{{MB}}{{MC}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{PB}} = \frac{{MB}}{{PB}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{MC}}\)
Tam giác PMB có: PM//AH nên theo định lí Thalès ta có: \(\frac{{MB}}{{MH}} = \frac{{PB}}{{PA}}\), suy ra \(\frac{{MB}}{{PB}} = \frac{{MH}}{{PA}}\)
Tam giác AHC có: MN//AH nên theo định lí Thalès ta có: \(\frac{{NC}}{{NA}} = \frac{{MC}}{{MH}}\)
Do đó: \(\frac{{MB}}{{PB}}.\frac{{NC}}{{NA}}.\frac{{PA}}{{MC}} = \frac{{MH}}{{PA}}.\frac{{MC}}{{MH}}.\frac{{PA}}{{MC}} = 1\)
Bài 9.49 trang 63 sách bài tập Toán 8 - Kết nối tri thức thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân và cách tính diện tích hình thang. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức sau:
Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài để hiểu rõ yêu cầu. Bài 9.49 thường yêu cầu tính độ dài một cạnh, chiều cao hoặc diện tích của hình thang cân dựa trên các thông tin đã cho. Việc vẽ hình minh họa sẽ giúp học sinh dễ dàng hình dung bài toán và tìm ra phương pháp giải phù hợp.
(Giả sử đề bài cụ thể là: Cho hình thang cân ABCD có AB // CD, AB = 6cm, CD = 10cm, AD = BC = 5cm. Tính chiều cao của hình thang.)
Ngoài bài 9.49, còn rất nhiều bài tập tương tự về hình thang cân. Để giải tốt các bài tập này, học sinh cần luyện tập thường xuyên và nắm vững các phương pháp sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Bài 9.49 trang 63 sách bài tập Toán 8 - Kết nối tri thức là một bài tập điển hình về hình thang cân. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, các em học sinh sẽ tự tin hơn trong việc giải các bài tập tương tự. Chúc các em học tốt!