Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trắc nghiệm Toán 8 Kết nối tri thức. Chúng tôi giúp bạn hiểu rõ kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết mang đến cho bạn những bài giải dễ hiểu, logic và đầy đủ.
Biểu thức nào sau đây không phải là phân thức đại số?
Biểu thức nào sau đây không phải là phân thức đại số?
A. \(2x + 1\)
B. \(\sqrt 5 \)
C. \(\pi \)
D. \(\sqrt x \)
Phương pháp giải:
Sử dụng kiến thức về khái niệm phân thức đại số để tìm biểu thức không là phân thức đại số: Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng \(\frac{A}{B}\), trong đó A, B là hai đa thức và đa thức B khác đa thức 0.
Lời giải chi tiết:
Chọn đáp án D vì \(\sqrt x \) không là đa thức.
Phân thức nào sau đây bằng phân thức \(\frac{{16{x^4} - 1}}{{12{x^3} - 3x}}\)?
A. \(\frac{{4{x^2} - 1}}{{3x}}\)
B. \(\frac{{4{x^2} + 1}}{{3x}}\)
C. \(\frac{{4{x^2} - 1}}{{4x - 3}}\)
D. \(\frac{{4{x^2} + 1}}{{4 - 3x}}\)
Phương pháp giải:
Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn.
+ Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Lời giải chi tiết:
Ta có: \(\frac{{16{x^4} - 1}}{{12{x^3} - 3x}} = \frac{{\left( {4{x^2} - 1} \right)\left( {4{x^2} + 1} \right)}}{{3x\left( {4{x^2} - 1} \right)}} = \frac{{4{x^2} + 1}}{{3x}}\)
Chọn B.
Đa thức nào sau đây không thể chọn làm mẫu thức chung của hai phân thức \(\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}\) và \(\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}}\)?
A. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} - x + 1} \right)\)
B. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)\)
C. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\)
D. \(3\left( {{x^4} - 1} \right)\left( {{x^6} - 1} \right)\left( {{x^6} - 64} \right)\)
Phương pháp giải:
Sử dụng kiến quy đồng mẫu thức nhiều phân thức để quy đồng mẫu thức các phân thức:
+ Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
+ Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó
+ Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Đa thức \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\) không chia hết cho đa thức \({x^3} + 1\) nên đa thức \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\) không thể chọn làm mẫu thức chung của hai phân thức \(\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}\) và \(\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}}\)
Chọn C
Rút gọn biểu thức \(\frac{{x - 1}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{x - 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{1 - x}}\), ta được kết quả là:
A. \(\frac{2}{{x - 1}}\)
B. \(\frac{{ - 2}}{{{x^3} + 1}}\)
C. \(\frac{2}{{{x^3} + 1}}\)
D. \(\frac{2}{{x + 1}}\)
Phương pháp giải:
+ Sử dụng kiến thức cộng (trừ) các phân thức cùng mẫu để cộng (trừ) phân thức: Muốn cộng (trừ) hai phân thức cùng mẫu ta cộng (trừ) các tử thức và giữa nguyên mẫu thức.
+ Sử dụng kiến thức cộng (trừ) các phân thức khác mẫu để cộng (trừ) phân thức: Quy đồng mẫu thức rồi cộng (trừ) các phân thức cùng mẫu vừa tìm được.
+ Sử dụng kiến thức về tính chất giao hoán, kết hợp của phép cộng phân thức:
- Tính chất giao hoán: \(\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}\)
- Tính chất kết hợp: \(\left( {\frac{A}{B} + \frac{C}{D}} \right) + \frac{M}{N} = \frac{A}{B} + \left( {\frac{C}{D} + \frac{M}{N}} \right)\)
Lời giải chi tiết:
\(\frac{{x - 1}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{x - 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{1 - x}}\)
\( = \left( {\frac{{x - 1}}{{{x^3} + 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}}} \right) + \left( {\frac{{1 - 2x}}{{x - 1}} - \frac{{1 - 2x}}{{x - 1}}} \right)\)
\( = \frac{{x - 1 - 3x - 2 + 1 - x + 3x}}{{{x^3} + 1}} + 0 = \frac{{ - 2}}{{{x^3} + 1}}\)
Chọn B
Biểu thức nào sau đây không phải là phân thức đại số?
A. \(2x + 1\)
B. \(\sqrt 5 \)
C. \(\pi \)
D. \(\sqrt x \)
Phương pháp giải:
Sử dụng kiến thức về khái niệm phân thức đại số để tìm biểu thức không là phân thức đại số: Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng \(\frac{A}{B}\), trong đó A, B là hai đa thức và đa thức B khác đa thức 0.
Lời giải chi tiết:
Chọn đáp án D vì \(\sqrt x \) không là đa thức.
Phân thức nào sau đây bằng phân thức \(\frac{{16{x^4} - 1}}{{12{x^3} - 3x}}\)?
A. \(\frac{{4{x^2} - 1}}{{3x}}\)
B. \(\frac{{4{x^2} + 1}}{{3x}}\)
C. \(\frac{{4{x^2} - 1}}{{4x - 3}}\)
D. \(\frac{{4{x^2} + 1}}{{4 - 3x}}\)
Phương pháp giải:
Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn.
+ Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Lời giải chi tiết:
Ta có: \(\frac{{16{x^4} - 1}}{{12{x^3} - 3x}} = \frac{{\left( {4{x^2} - 1} \right)\left( {4{x^2} + 1} \right)}}{{3x\left( {4{x^2} - 1} \right)}} = \frac{{4{x^2} + 1}}{{3x}}\)
Chọn B.
Đa thức nào sau đây không thể chọn làm mẫu thức chung của hai phân thức \(\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}\) và \(\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}}\)?
A. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} - x + 1} \right)\)
B. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)\)
C. \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\)
D. \(3\left( {{x^4} - 1} \right)\left( {{x^6} - 1} \right)\left( {{x^6} - 64} \right)\)
Phương pháp giải:
Sử dụng kiến quy đồng mẫu thức nhiều phân thức để quy đồng mẫu thức các phân thức:
+ Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
+ Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó
+ Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Đa thức \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\) không chia hết cho đa thức \({x^3} + 1\) nên đa thức \(3\left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + x + 1} \right)\) không thể chọn làm mẫu thức chung của hai phân thức \(\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}\) và \(\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}}\)
Chọn C
Giá trị của phân thức \(\frac{{8x - 4}}{{8{x^3} - 1}}\) tại \(x = - 0,5\) là:
A. 4
B. -4
C. 0,25
D. -0,25
Phương pháp giải:
Sử dụng kiến thức giá trị của phân thức tại một giá trị đã cho của biến để tính giá trị phân thức: Muốn tính giá trị của một phân thức tại một giá trị đã cho của biến ta thay giá trị đã cho của biến vào phân thức đó rồi tính giá trị biểu thức số nhận được.
Lời giải chi tiết:
Thay \(x = - 0,5\) vào phân thức ta có: \(\frac{{8.\left( { - 0,5} \right) - 4}}{{8.{{\left( { - 0,5} \right)}^3} - 1}} = \frac{{ - 4 - 4}}{{ - 1 - 1}} = \frac{{ - 8}}{{ - 2}} = 4\)
Chọn A
Rút gọn biểu thức \(\frac{{x - 1}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{x - 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{1 - x}}\), ta được kết quả là:
A. \(\frac{2}{{x - 1}}\)
B. \(\frac{{ - 2}}{{{x^3} + 1}}\)
C. \(\frac{2}{{{x^3} + 1}}\)
D. \(\frac{2}{{x + 1}}\)
Phương pháp giải:
+ Sử dụng kiến thức cộng (trừ) các phân thức cùng mẫu để cộng (trừ) phân thức: Muốn cộng (trừ) hai phân thức cùng mẫu ta cộng (trừ) các tử thức và giữa nguyên mẫu thức.
+ Sử dụng kiến thức cộng (trừ) các phân thức khác mẫu để cộng (trừ) phân thức: Quy đồng mẫu thức rồi cộng (trừ) các phân thức cùng mẫu vừa tìm được.
+ Sử dụng kiến thức về tính chất giao hoán, kết hợp của phép cộng phân thức:
- Tính chất giao hoán: \(\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}\)
- Tính chất kết hợp: \(\left( {\frac{A}{B} + \frac{C}{D}} \right) + \frac{M}{N} = \frac{A}{B} + \left( {\frac{C}{D} + \frac{M}{N}} \right)\)
Lời giải chi tiết:
\(\frac{{x - 1}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{x - 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}} + \frac{{1 - 2x}}{{1 - x}}\)
\( = \left( {\frac{{x - 1}}{{{x^3} + 1}} - \frac{{3x + 2}}{{{x^3} + 1}} + \frac{{1 - x}}{{{x^3} + 1}} + \frac{{3x}}{{{x^3} + 1}}} \right) + \left( {\frac{{1 - 2x}}{{x - 1}} - \frac{{1 - 2x}}{{x - 1}}} \right)\)
\( = \frac{{x - 1 - 3x - 2 + 1 - x + 3x}}{{{x^3} + 1}} + 0 = \frac{{ - 2}}{{{x^3} + 1}}\)
Chọn B
Giá trị của phân thức \(\frac{{8x - 4}}{{8{x^3} - 1}}\) tại \(x = - 0,5\) là:
A. 4
B. -4
C. 0,25
D. -0,25
Phương pháp giải:
Sử dụng kiến thức giá trị của phân thức tại một giá trị đã cho của biến để tính giá trị phân thức: Muốn tính giá trị của một phân thức tại một giá trị đã cho của biến ta thay giá trị đã cho của biến vào phân thức đó rồi tính giá trị biểu thức số nhận được.
Lời giải chi tiết:
Thay \(x = - 0,5\) vào phân thức ta có: \(\frac{{8.\left( { - 0,5} \right) - 4}}{{8.{{\left( { - 0,5} \right)}^3} - 1}} = \frac{{ - 4 - 4}}{{ - 1 - 1}} = \frac{{ - 8}}{{ - 2}} = 4\)
Chọn A
Trang 14 sách bài tập Toán 8 Kết nối tri thức tập trung vào các dạng bài tập trắc nghiệm liên quan đến các kiến thức cơ bản đã học trong chương. Việc nắm vững kiến thức nền tảng và rèn luyện kỹ năng giải bài tập trắc nghiệm là vô cùng quan trọng để đạt kết quả cao trong các bài kiểm tra và thi cử.
Để giải tốt các bài tập trắc nghiệm trang 14, bạn cần nắm vững các phương pháp sau:
Đây là phương pháp đơn giản và hiệu quả nhất. Bạn hãy đọc kỹ đề bài, xác định các điều kiện của bài toán và loại trừ các đáp án không thỏa mãn các điều kiện đó.
Nếu bạn không biết cách giải bài toán, hãy thử từng đáp án vào đề bài để xem đáp án nào thỏa mãn. Phương pháp này thường được sử dụng khi bài toán có ít đáp án.
Trong quá trình giải bài tập, bạn cần sử dụng các kiến thức đã học để tìm ra đáp án đúng. Ví dụ, khi giải bài tập về phân tích đa thức thành nhân tử, bạn cần sử dụng các hằng đẳng thức đã học.
Câu 1: Đa thức nào sau đây là đa thức bậc 2?
Giải: Đáp án đúng là B. Vì đa thức x2 - 2x + 1 có bậc là 2.
Câu 2: Phân tích đa thức x2 - 4 thành nhân tử, ta được:
Giải: Đáp án đúng là C. Vì x2 - 4 = (x - 2)(x + 2) (sử dụng hằng đẳng thức a2 - b2 = (a - b)(a + b)).
Để nắm vững kiến thức và kỹ năng giải bài tập trắc nghiệm trang 14, bạn nên:
Hãy dành thời gian ôn tập kiến thức lý thuyết trước khi làm bài tập. Đọc kỹ đề bài và xác định yêu cầu của bài toán. Sử dụng các phương pháp giải bài tập một cách linh hoạt và hiệu quả. Kiểm tra lại kết quả sau khi làm xong bài tập.
Chúc bạn học tập tốt và đạt kết quả cao!