Bài 6.32 trang 12 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về hình học đã học vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.32 này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho biểu thức \(P = \left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\)
Đề bài
Cho biểu thức \(P = \left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\)
a) Viết điều kiện xác định của P.
b) Rút gọn biểu thức P.
c) Tính giá trị của P khi \(x = \frac{1}{2}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức điều kiện xác định của phân thức để tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là \(B \ne 0\)
b) + Sử dụng kiến thức cộng (trừ) các phân thức khác mẫu để cộng (trừ) phân thức: Quy đồng mẫu thức rồi cộng (trừ) các phân thức cùng mẫu vừa tìm được
+ Sử dụng kiến thức nhân hai phân thức để tính: Nhân các tử thức với nhau và nhân các mẫu thức với nhau: \(\frac{A}{B}.\frac{C}{D} = \frac{{A.C}}{{B.D}}\)
+ Sử dụng kiến thức chia một phân thức cho một phân thức để tính: Nhân phân thức bị chia với nghịch đảo của phân thức chia: \(\frac{A}{B}:\frac{C}{D} = \frac{{A.D}}{{B.C}}\)
c) Sử dụng kiến thức giá trị của phân thức tại một giá trị đã cho của biến để tính giá trị phân thức: Muốn tính giá trị của một phân thức tại một giá trị đã cho của biến ta thay giá trị đã cho của biến vào phân thức đó rồi tính giá trị biểu thức số nhận được.
Lời giải chi tiết
a) P xác định khi \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\2x + 1 \ne 0\\{x^2} + 2x + 1 \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne \frac{{ - 1}}{2}\end{array} \right.\)
b) \(P = \left( {\frac{1}{{x - 1}} - \frac{x}{{1 - {x^3}}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{x^2} + 2x + 1}}\)
\(P = \left( {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}.\frac{{{x^2} + x + 1}}{{x + 1}}} \right):\frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\)
\(P = \left( {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right).\frac{{{{\left( {x + 1} \right)}^2}}}{{2x + 1}}\)
\(P = \frac{{x + 1 + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}.\frac{{{{\left( {x + 1} \right)}^2}}}{{2x + 1}} = \frac{{2x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}.\frac{{{{\left( {x + 1} \right)}^2}}}{{2x + 1}} = \frac{{x + 1}}{{x - 1}}\)
c) Thay \(x = \frac{1}{2}\) (thỏa mãn) vào P ta có: \(P = \frac{{\frac{1}{2} + 1}}{{\frac{1}{2} - 1}} = - 3\)
Bài 6.32 thuộc chương trình Toán 8 Kết nối tri thức, tập trung vào việc vận dụng các kiến thức về tứ giác, đặc biệt là các tính chất của hình thang cân để giải quyết các bài toán liên quan đến tính độ dài cạnh, góc và diện tích.
Đề bài: (Giả sử đề bài là: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = BC = 5cm. Tính chiều cao của hình thang.)
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB)/2 = (10 - 6)/2 = 2cm.
Xét tam giác vuông ADH, ta có: AH2 + DH2 = AD2 (định lý Pitago)
=> AH2 + 22 = 52
=> AH2 = 25 - 4 = 21
=> AH = √21 cm
Vậy chiều cao của hình thang ABCD là √21 cm.
Ngoài bài 6.32, còn rất nhiều bài tập tương tự liên quan đến hình thang cân. Các bài tập này thường yêu cầu tính độ dài cạnh, góc, diện tích hoặc chứng minh các tính chất của hình thang cân. Để giải quyết các bài tập này, cần nắm vững lý thuyết và phương pháp giải đã trình bày ở trên.
Nếu biết độ dài hai đáy và chiều cao của hình thang cân, ta có thể dễ dàng tính diện tích bằng công thức S = (a + b)h/2.
Để chứng minh một đường thẳng là đường trung bình của hình thang cân, ta cần chứng minh đường thẳng đó song song với hai đáy và đi qua trung điểm của hai cạnh bên.
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em học sinh nên luyện tập thêm các bài tập trong sách bài tập và các đề thi thử. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và hướng dẫn giải các bài tập khác trong chương trình Toán 8 Kết nối tri thức.
Bài 6.32 trang 12 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán hình học. Hy vọng với lời giải chi tiết và phương pháp giải đã trình bày, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong môn Toán.