Bài 9.61 trang 68 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập này đòi hỏi học sinh phải hiểu rõ các định lý, tính chất đã học và vận dụng linh hoạt vào giải quyết vấn đề.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.61 trang 68 sách bài tập Toán 8 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0},\widehat N = {40^0}\). Hãy tính số đo các góc còn lại của hai tam giác ABC và MNP.
Đề bài
Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0},\widehat N = {40^0}\). Hãy tính số đo các góc còn lại của hai tam giác ABC và MNP.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ:
+ Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}};\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C\).
+ Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A'B'C'\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = k\) được gọi là tỉ số đồng dạng.
Lời giải chi tiết
Vì $\Delta ABC\backsim \Delta MNP$ nên \(\widehat A = \widehat M = {60^0},\widehat B = \widehat N = {40^0},\widehat C = \widehat P\)
Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = {180^0}\) nên \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {60^0} - {40^0} = {80^0}\)
Suy ra \(\widehat C = \widehat P = {80^0}\)
Bài 9.61 trang 68 sách bài tập Toán 8 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến hình thang cân. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hình thang cân, bao gồm:
Đề bài: (Giả sử đề bài là: Cho hình thang cân ABCD (AB // CD), có AB = 5cm, CD = 10cm, AD = 6cm. Tính chiều cao của hình thang.)
Để giải bài toán này, chúng ta có thể sử dụng phương pháp sau:
Vậy chiều cao của hình thang cân ABCD là khoảng 5.45cm.
Ngoài bài toán tính chiều cao, bài tập về hình thang cân còn có nhiều dạng khác như:
Để giải các bài tập này, các em cần:
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em có thể luyện tập thêm các bài tập sau:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn trong việc giải các bài tập về hình thang cân và đạt kết quả tốt trong môn Toán 8.
Bài 9.61 trang 68 sách bài tập Toán 8 Kết nối tri thức là một bài tập điển hình về hình thang cân. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp các em học sinh hiểu sâu hơn về hình học và tự tin hơn trong việc giải quyết các vấn đề thực tế.