Bài 7.34 trang 33 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán thực tế liên quan đến các yếu tố hình học và đại số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.34 trang 33, giúp các em học sinh nắm vững phương pháp giải và tự tin hơn trong các bài kiểm tra.
Tìm hàm số bậc nhất có đồ thị là đường thẳng với hệ số góc là 2 và cắt trục hoành tại điểm có hoành độ bằng \( - 3\)
Đề bài
Tìm hàm số bậc nhất có đồ thị là đường thẳng với hệ số góc là 2 và cắt trục hoành tại điểm có hoành độ bằng \( - 3\)
Phương pháp giải - Xem chi tiết
+ Sử dụng khái niệm hệ số góc của đường thẳng để viết hàm số bậc nhất: Ta gọi a là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\)
+ Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \( - 3\) thì tung độ bằng 0.
+ Thay tọa độ của điểm thuộc trục hoành và thuộc đồ thị hàm số vào hàm số để tìm b.
Lời giải chi tiết
Giả sử hàm số bậc nhất có dạng \(y = ax + b\left( {a \ne 0} \right)\)
Vì hàm số bậc nhất \(y = ax + b\left( {a \ne 0} \right)\) có đồ thị là đường thẳng có hệ số góc bằng 2 nên \(a = 2\) (thỏa mãn). Do đó, \(y = 2x + b\)
Lại có, đường thẳng \(y = 2x + b\) cắt trục hoành tại điểm có hoành độ bằng \( - 3\) nên ta có:
\(0 = 2.\left( { - 3} \right) + b\)
\(b = 6\)
Do đó, hàm số cần tìm là: \(y = 2x + 6\)
Bài 7.34 trang 33 sách bài tập Toán 8 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán thực tế, thường liên quan đến việc tính toán diện tích, chu vi, hoặc các yếu tố hình học khác trong một tình huống cụ thể. Để giải bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hình học, đặc biệt là các công thức tính diện tích và chu vi của các hình thường gặp như hình vuông, hình chữ nhật, hình tam giác, hình tròn.
Trước khi bắt đầu giải bài toán, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh tránh được những sai sót không đáng có và tập trung vào việc giải quyết đúng vấn đề.
Đề bài: Một mảnh đất hình chữ nhật có chiều dài 15m và chiều rộng 8m. Người ta muốn xây một hàng rào xung quanh mảnh đất. Hỏi cần bao nhiêu mét rào?
Giải:
Khi giải bài toán, học sinh cần chú ý đến đơn vị đo lường và đảm bảo rằng tất cả các yếu tố đều được biểu diễn bằng cùng một đơn vị. Ngoài ra, học sinh cũng nên kiểm tra lại kết quả để đảm bảo tính chính xác.
Để hiểu sâu hơn về các khái niệm và công thức liên quan đến hình học, học sinh có thể tham khảo thêm các tài liệu học tập khác hoặc tìm kiếm thông tin trên internet. Việc tự học và tìm tòi kiến thức mới là một trong những yếu tố quan trọng giúp học sinh đạt được thành công trong học tập.
Để rèn luyện kỹ năng giải bài toán, học sinh có thể tự giải thêm các bài tập tương tự trong sách bài tập hoặc trên các trang web học toán online. Việc thực hành thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn trong các bài kiểm tra.
Bài 7.34 trang 33 sách bài tập Toán 8 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán thực tế. Bằng cách nắm vững các kiến thức cơ bản về hình học và áp dụng các bước giải bài toán một cách hợp lý, học sinh có thể giải quyết bài toán này một cách dễ dàng và hiệu quả. Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ học tập tốt hơn và đạt được kết quả cao trong môn Toán.
Công thức | Mô tả |
---|---|
Chu vi hình chữ nhật | P = 2(a + b) (a: chiều dài, b: chiều rộng) |
Diện tích hình chữ nhật | S = a x b (a: chiều dài, b: chiều rộng) |