Logo Header
  1. Môn Toán
  2. Giải bài 1.23 trang 14 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 1.23 trang 14 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Giải bài 1.23 trang 14 Sách bài tập Toán 8 - Kết nối tri thức

Bài 1.23 trang 14 sách bài tập Toán 8 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức đã học vào giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.23 trang 14, giúp các em học sinh nắm vững phương pháp giải và tự tin hơn trong quá trình học tập.

Rút gọn biểu thức:

Đề bài

Rút gọn biểu thức:

a) \(\left( {x - y} \right)\left( {y + z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y - z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y + z} \right)\left( {z - x} \right)\);

b) \(\left( {2x + y} \right)\left( {2y + z} \right)\left( {2z + x} \right) - \left( {2x - y} \right)\left( {2y - z} \right)\left( {2z - x} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 1.23 trang 14 sách bài tập toán 8 - Kết nối tri thức với cuộc sống 1

Thực hiện nhân lần lượt hai đa thức rồi thu gọn các kết quả với nhau.

Lời giải chi tiết

Đặt \(A = \left( {x - y} \right)\left( {y + z} \right)\left( {z + x} \right)\); \(B = \left( {x + y} \right)\left( {y - z} \right)\left( {z + x} \right)\); \(C = \left( {x + y} \right)\left( {y + z} \right)\left( {z - x} \right)\).

Ta xét:

\(A = \left( {x - y} \right)\left( {y + z} \right)\left( {z + x} \right)\)

\( = \left( {xy + xz - {y^2} - yz} \right)\left( {z + x} \right)\)

\( = xyz + {x^2}y + x{z^2} + {x^2}z - {y^2}z - x{y^2} - y{z^2} - xyz\)

\( = \left( {xyz - xyz} \right) + {x^2}y + x{z^2} + {x^2}z - {y^2}z - x{y^2} - y{z^2}\)

\( = {x^2}y + x{z^2} + {x^2}z - {y^2}z - x{y^2} - y{z^2}\).

Tương tự

\(B = \left( {x + y} \right)\left( {y - z} \right)\left( {z + x} \right)\)

\( = \left( {xy - xz + {y^2} - yz} \right)\left( {z + x} \right)\)

\( = xyz + {x^2}y - x{z^2} - {x^2}z + {y^2}z + x{y^2} - y{z^2} - xyz\)

\( = {x^2}y - x{z^2} - {x^2}z + {y^2}z + x{y^2} - y{z^2}\).

\(C = \left( {x + y} \right)\left( {y + z} \right)\left( {z - x} \right)\)

\( = \left( {xy + xz + {y^2} + yz} \right)\left( {z - x} \right)\)

\( = xyz - {x^2}y + x{z^2} - {x^2}z + {y^2}z - x{y^2} + y{z^2} - xyz\)

\( = \left( {xyz - xyz} \right) - {x^2}y + x{z^2} - {x^2}z + {y^2}z - x{y^2} + y{z^2}\)

\( = - {x^2}y + x{z^2} - {x^2}z + {y^2}z - x{y^2} + y{z^2}\).

Khi đó

\(\left( {x - y} \right)\left( {y + z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y - z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y + z} \right)\left( {z - x} \right) = A + B + C\)

\(\begin{array}{l} = {x^2}y + x{z^2} + {x^2}z - {y^2}z - x{y^2} - y{z^2} + {x^2}y - x{z^2} - {x^2}z + {y^2}z + x{y^2} - y{z^2} + \\ - {x^2}y + x{z^2} - {x^2}z + {y^2}z - x{y^2} + y{z^2}\end{array}\)

\(\begin{array}{l} = \left( {{x^2}y + {x^2}y - {x^2}y} \right) + \left( { - x{y^2} + x{y^2} - x{y^2}} \right) + \left( {x{z^2} - x{z^2} + x{z^2}} \right) + \left( {{x^2}z - {x^2}z - {x^2}z} \right)\\ + \left( { - {y^2}z + {y^2}z + {y^2}z} \right) + \left( { - y{z^2} - y{z^2} + y{z^2}} \right)\end{array}\)

\( = {x^2}y - x{y^2} + x{z^2} - {x^2}z + {y^2}z - y{z^2}\).

b)

Đặt \(M = \left( {2x + y} \right)\left( {2y + z} \right)\left( {2z + x} \right)\); \(N = \left( {2x - y} \right)\left( {2y - z} \right)\left( {2z - x} \right)\).

Ta xét

\(M = \left( {2x + y} \right)\left( {2y + z} \right)\left( {2z + x} \right)\)

\( = \left( {4xy + 2xz + 2{y^2} + yz} \right)\left( {2z + x} \right)\)

\( = 8xyz + 4{x^2}y + 4x{z^2} + 2{x^2}z + 4{y^2}z + 2x{y^2} + 2y{z^2} + xyz\)

\( = \left( {8xyz + xyz} \right) + 4{x^2}y + 4x{z^2} + 2{x^2}z + 4{y^2}z + 2x{y^2} + 2y{z^2}\)

\( = 9xyz + 4{x^2}y + 4x{z^2} + 2{x^2}z + 4{y^2}z + 2x{y^2} + 2y{z^2}\)

Tương tự

\(N = \left( {2x - y} \right)\left( {2y - z} \right)\left( {2z - x} \right)\)

\( = \left( {4xy - 2xz - 2{y^2} + yz} \right)\left( {2z - x} \right)\)

\( = 8xyz - 4{x^2}y - 4x{z^2} + 2{x^2}z - 4{y^2}z + 2x{y^2} + 2y{z^2} - xyz\)

\( = \left( {8xyz - xyz} \right) - 4{x^2}y - 4x{z^2} + 2{x^2}z - 4{y^2}z + 2x{y^2} + 2y{z^2}\)

\( = 7xyz - 4{x^2}y - 4x{z^2} + 2{x^2}z - 4{y^2}z + 2x{y^2} + 2y{z^2}\).

Do đó

\(\left( {2x + y} \right)\left( {2y + z} \right)\left( {2z + x} \right) - \left( {2x - y} \right)\left( {2y - z} \right)\left( {2z - x} \right) = M - N\)

\(\begin{array}{l} = \left( {9xyz + 4{x^2}y + 4x{z^2} + 2{x^2}z + 4{y^2}z + 2x{y^2} + 2y{z^2}} \right)\\ - \left( {7xyz - 4{x^2}y - 4x{z^2} + 2{x^2}z - 4{y^2}z + 2x{y^2} + 2y{z^2}} \right)\end{array}\) \(\begin{array}{l} = 9xyz + 4{x^2}y + 4x{z^2} + 2{x^2}z + 4{y^2}z + 2x{y^2} + 2y{z^2} - 7xyz + \\ + 4{x^2}y + 4x{z^2} - 2{x^2}z + 4{y^2}z - 2x{y^2} - 2y{z^2}\end{array}\)

\( = \left( {9xyz - 7xyz} \right) + \left( {4{x^2}y + 4{x^2}y} \right) + \left( {4{y^2}z + 4{y^2}z} \right) + \left( {4x{z^2} + 4x{z^2}} \right) + \)

\( + \left( {2x{y^2} - 2x{y^2}} \right) + \left( {2y{z^2} - 2y{z^2}} \right) + \left( {2{x^2}z - 2{x^2}z} \right)\)

\( = 2xyz + 8{x^2}y + 8{y^2}z + 8x{z^2}\).

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 1.23 trang 14 sách bài tập toán 8 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán 8 sgk trên soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 1.23 trang 14 Sách bài tập Toán 8 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.23 trang 14 sách bài tập Toán 8 - Kết nối tri thức với cuộc sống yêu cầu học sinh vận dụng kiến thức về các phép biến đổi đại số để rút gọn biểu thức. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các quy tắc về dấu ngoặc, quy tắc chuyển vế, và các phép toán cộng, trừ, nhân, chia đa thức.

Đề bài:

Rút gọn các biểu thức sau:

  1. a) (3x + 5)(x - 2)
  2. b) (x - 1)(x2 + x + 1)
  3. c) (2x - 3)2
  4. d) (x + 2)(x2 - 2x + 4)

Lời giải chi tiết:

  1. a) (3x + 5)(x - 2)

    Áp dụng công thức (a + b)(a - b) = a2 - b2 và quy tắc nhân đa thức, ta có:

    (3x + 5)(x - 2) = 3x(x - 2) + 5(x - 2) = 3x2 - 6x + 5x - 10 = 3x2 - x - 10

  2. b) (x - 1)(x2 + x + 1)

    Áp dụng công thức hiệu hai lập phương: (a - b)(a2 + ab + b2) = a3 - b3, ta có:

    (x - 1)(x2 + x + 1) = x3 - 13 = x3 - 1

  3. c) (2x - 3)2

    Áp dụng công thức bình phương của một hiệu: (a - b)2 = a2 - 2ab + b2, ta có:

    (2x - 3)2 = (2x)2 - 2(2x)(3) + 32 = 4x2 - 12x + 9

  4. d) (x + 2)(x2 - 2x + 4)

    Áp dụng công thức tổng hai lập phương: (a + b)(a2 - ab + b2) = a3 + b3, ta có:

    (x + 2)(x2 - 2x + 4) = x3 + 23 = x3 + 8

Lưu ý khi giải bài tập:

  • Luôn kiểm tra lại các bước biến đổi để tránh sai sót.
  • Nắm vững các công thức đại số cơ bản.
  • Thực hành giải nhiều bài tập tương tự để củng cố kiến thức.

Ví dụ minh họa thêm:

Giả sử chúng ta có biểu thức (x + 1)(x - 1). Áp dụng công thức (a + b)(a - b) = a2 - b2, ta có:

(x + 1)(x - 1) = x2 - 1

Tổng kết:

Bài 1.23 trang 14 sách bài tập Toán 8 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng biến đổi đại số. Bằng cách nắm vững các công thức và quy tắc, các em có thể giải quyết bài tập một cách nhanh chóng và chính xác.

Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 8