Chào mừng các em học sinh đến với bài giải chi tiết bài 1.39 trang 29 SGK Toán 8. Bài học này thuộc chương trình Toán 8, tập trung vào việc vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải đầy đủ, dễ hiểu, giúp các em hiểu rõ phương pháp giải và tự tin làm bài tập.
Phân tích các đa thức sau thành nhân tử:
Đề bài
Phân tích các đa thức sau thành nhân tử:
\(a)xy + xz - 13y - 13z\)
\(b){x^2} + 8x - 9{y^2} + 16\)
\(c){x^3}{y^2} - 2{x^2}y + x\)
\(d){x^2}y - 4{x^2} + 16 - 4y\)
Phương pháp giải - Xem chi tiết
Sử dụng các phương pháp phân tích đa thức thành nhân tử bằng các phương pháp đã học để tính.
Lời giải chi tiết
\(\begin{array}{l}a)xy + xz - 13y - 13z\\ = \left( {xy - 13y} \right) + \left( {xz - 13z} \right)\\ = y\left( {x - 13} \right) + z\left( {x - 13} \right)\\ = \left( {y + z} \right)\left( {x - 13} \right)\end{array}\)
\(\begin{array}{l}b){x^2} + 8x - 9{y^2} + 16\\ = \left( {{x^2} - 9{y^2}} \right) + \left( {8x + 16} \right)\\ = \left( {x - 3} \right)\left( {x + 3} \right) + 8\left( {x + 2} \right)\end{array}\)
\(\begin{array}{l}c){x^3}{y^2} - 2{x^2}y + x\\ = x\left( {{x^2}{y^2} - 2xy + 1} \right)\end{array}\)
\(\begin{array}{l}d){x^2}y - 4{x^2} + 16 - 4y\\ = \left( {{x^2}y - 4{x^2}} \right) + \left( {16 - 4y} \right)\\ = {x^2}\left( {y - 4} \right) + 4\left( {4 - y} \right)\\ = {x^2}\left( {y - 4} \right) - 4\left( {y - 4} \right)\\ = \left( {{x^2} - 4} \right)\left( {y - 4} \right)\end{array}\)
Bài 1.39 trang 29 SGK Toán 8 thuộc chương trình đại số, thường liên quan đến việc giải phương trình bậc nhất một ẩn hoặc các bài toán về ứng dụng phương trình. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Để cung cấp một lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 1.39. Tuy nhiên, dựa trên kinh nghiệm giải các bài toán tương tự, chúng ta có thể đưa ra một quy trình giải chung:
Giả sử bài 1.39 có nội dung như sau: “Một người đi xe máy từ A đến B với vận tốc 40km/h. Sau khi đi được 1 giờ, người đó tăng vận tốc lên 50km/h và đến B muộn hơn 30 phút so với dự kiến. Tính quãng đường AB.”
Giải:
Gọi x là quãng đường AB (km). Thời gian dự kiến đi từ A đến B là x/40 (giờ). Thời gian thực tế đi từ A đến B là 1 + (x-40)/50 (giờ). Theo đề bài, thời gian thực tế nhiều hơn thời gian dự kiến 30 phút (0.5 giờ). Ta có phương trình:
1 + (x-40)/50 = x/40 + 0.5
Giải phương trình, ta được x = 200 (km). Vậy quãng đường AB là 200km.
Để củng cố kiến thức và kỹ năng giải bài tập về phương trình bậc nhất một ẩn, các em có thể luyện tập thêm các bài tập tương tự trong SGK Toán 8 và các tài liệu tham khảo khác. Hãy chú trọng vào việc đọc kỹ đề bài, xác định ẩn số và lập phương trình chính xác.
Trong quá trình học tập, nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè. Hãy dành thời gian ôn tập lý thuyết và làm bài tập thường xuyên để nắm vững kiến thức. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Khái niệm | Giải thích |
---|---|
Phương trình bậc nhất một ẩn | Phương trình có dạng ax + b = 0, với a ≠ 0. |
Nghiệm của phương trình | Giá trị của ẩn số x sao cho phương trình trở thành một đẳng thức. |