Chào mừng các em học sinh đến với bài giải chi tiết mục 3 trang 65, 66 sách giáo khoa Toán 8. Tại giaitoan.edu.vn, chúng tôi cung cấp các lời giải bài tập Toán 8 được trình bày rõ ràng, dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.
Mục tiêu của chúng tôi là hỗ trợ các em học sinh nắm vững kiến thức Toán học, rèn luyện kỹ năng giải bài tập và đạt kết quả tốt nhất trong các kỳ thi.
Trong mỗi trường hợp ở hình 3.33, em hãy giải thích vì sao
Trong hình 3.34, tứ giác \(ABCD\) có \(\widehat {{A_1}} = \widehat C\) và \(\widehat B = \widehat D = 70^\circ .\)
Em hãy tính số đo các góc \({A_1},{A_2}\) và giải thích vì sao \(ABCD\) là hình bình hành.
Phương pháp giải:
Chứng minh tứ giác ABCD có 2 cặp cạnh song song.
Lời giải chi tiết:
Ta có \(\widehat {{A_1}} + \widehat D + \widehat C + \widehat B = 360^\circ \)
\( \Rightarrow \widehat {{A_1}} + \widehat B = 180^\circ \)\( \Rightarrow \widehat {{A_1}} = 180^\circ - \widehat B \Rightarrow \widehat {{A_1}} = 180^\circ - 70^\circ = 110^\circ .\)
Có \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (hai góc kề bù)
\( \Rightarrow \widehat {{A_2}} = 180^\circ - 110^\circ = 70^\circ .\)
Ta có \(\widehat {{A_2}} = \widehat B = 70^\circ \) mà hai góc này nằm ở vị trí so le trong nên suy ra AD//BC.
Ta có \(\widehat {{A_2}} = \widehat D = 70^\circ \) mà hai góc này nằm ở vị trí đồng vị nên suy ra AB//DC.
Vậy tứ giác ABCD là hình bình hành.
Trong Hình 3.36, Nam di chuyển thước ê ke dọc theo đường thẳng d sao cho cạnh huyền của thước luôn nằm trên d. Khi đỉnh góc \(60^\circ \) lần lượt ở vị trí điểm \(C\) và \(D.\) Nối hai điểm \(C\) và \(D,\) Nam được một đường thẳng song song với d. Em hãy giải thích vì sao?
Phương pháp giải:
Ta đi chứng minh ABCD là hình bình hành và suy ra các cặp cạnh song song.
Lời giải chi tiết:
Ta thấy góc CAB bằng góc DBd mà hai góc này ở vị trí đồng vị.
Suy ra \(CA//DB\) mà \(CA = DB\) (do cùng bằng cạnh thước ê ke)
Nên suy ra \(AC{\rm{D}}B\) là hình bình hành
Suy ra \(CD//AB\) hay \(CD//d\left( {dpcm} \right)\)
Trong các tứ giác ở hình 3.35, tứ giác nào là hình bình hành?
Phương pháp giải:
Sử dụng dấu hiệu nhận biết của hình bình hành:
Lời giải chi tiết:
Xét tứ giác ABCD có hai cặp cạnh đối bằng nhau (\(AD = BC = 4;AB = DC = 3)\) nên ABCD là hình bình hành.
EHGF không phải hình bình hành do hai đường chéo không cắt nhau tại trung điểm mỗi đường.
JMLK không phải hình bình hành do không có hai góc đối bằng nhau.
Trong mỗi trường hợp ở hình 3.33, em hãy giải thích vì sao các tam giác được cho bằng nhau và ABCD là hình bình hành.
a)
b) \(\Delta ABC = \Delta CDA.\)
c) \(\Delta {\rm{OAD = }}\Delta {\rm{OCB}}\)
Phương pháp giải:
Sử dụng các trường hợp bằng nhau của tam giác suy ra hai tam giác bằng nhau.
Chứng minh các cặp cạnh đối song song và kết luận tứ giác đó là hình bình hành.
Lời giải chi tiết:
a)
Có \(AD = BC\)
AC chung \(AB = DC\)
Vậy \(\Delta ABC = \Delta CDA\left( {c - c - c} \right) \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
b)
Có \(\widehat {{A_1}} = \widehat {{C_1}}\)
AC chung
\(AD = BC\)
Vậy \(\Delta ABC = \Delta CDA\left( {c - g - c} \right)\)
\( \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
c)
Có \(OA = OC\)
\(\widehat {{O_1}} = \widehat {{O_2}}\)(đối đỉnh)
\(OB = OD\)
Vậy \(\Delta {\rm{OAD = }}\Delta {\rm{OCB}}\) (c-g-c).
\( \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
Trong mỗi trường hợp ở hình 3.33, em hãy giải thích vì sao các tam giác được cho bằng nhau và ABCD là hình bình hành.
a)
b) \(\Delta ABC = \Delta CDA.\)
c) \(\Delta {\rm{OAD = }}\Delta {\rm{OCB}}\)
Phương pháp giải:
Sử dụng các trường hợp bằng nhau của tam giác suy ra hai tam giác bằng nhau.
Chứng minh các cặp cạnh đối song song và kết luận tứ giác đó là hình bình hành.
Lời giải chi tiết:
a)
Có \(AD = BC\)
AC chung \(AB = DC\)
Vậy \(\Delta ABC = \Delta CDA\left( {c - c - c} \right) \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
b)
Có \(\widehat {{A_1}} = \widehat {{C_1}}\)
AC chung
\(AD = BC\)
Vậy \(\Delta ABC = \Delta CDA\left( {c - g - c} \right)\)
\( \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
c)
Có \(OA = OC\)
\(\widehat {{O_1}} = \widehat {{O_2}}\)(đối đỉnh)
\(OB = OD\)
Vậy \(\Delta {\rm{OAD = }}\Delta {\rm{OCB}}\) (c-g-c).
\( \Rightarrow \widehat {ACD} = \widehat {BAC};\widehat {DAC} = \widehat {ACB}\)
Suy ra \(AD//BC;AB//DC\)
Vậy tứ giác ABCD là hình bình hành.
Trong hình 3.34, tứ giác \(ABCD\) có \(\widehat {{A_1}} = \widehat C\) và \(\widehat B = \widehat D = 70^\circ .\)
Em hãy tính số đo các góc \({A_1},{A_2}\) và giải thích vì sao \(ABCD\) là hình bình hành.
Phương pháp giải:
Chứng minh tứ giác ABCD có 2 cặp cạnh song song.
Lời giải chi tiết:
Ta có \(\widehat {{A_1}} + \widehat D + \widehat C + \widehat B = 360^\circ \)
\( \Rightarrow \widehat {{A_1}} + \widehat B = 180^\circ \)\( \Rightarrow \widehat {{A_1}} = 180^\circ - \widehat B \Rightarrow \widehat {{A_1}} = 180^\circ - 70^\circ = 110^\circ .\)
Có \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (hai góc kề bù)
\( \Rightarrow \widehat {{A_2}} = 180^\circ - 110^\circ = 70^\circ .\)
Ta có \(\widehat {{A_2}} = \widehat B = 70^\circ \) mà hai góc này nằm ở vị trí so le trong nên suy ra AD//BC.
Ta có \(\widehat {{A_2}} = \widehat D = 70^\circ \) mà hai góc này nằm ở vị trí đồng vị nên suy ra AB//DC.
Vậy tứ giác ABCD là hình bình hành.
Trong các tứ giác ở hình 3.35, tứ giác nào là hình bình hành?
Phương pháp giải:
Sử dụng dấu hiệu nhận biết của hình bình hành:
Lời giải chi tiết:
Xét tứ giác ABCD có hai cặp cạnh đối bằng nhau (\(AD = BC = 4;AB = DC = 3)\) nên ABCD là hình bình hành.
EHGF không phải hình bình hành do hai đường chéo không cắt nhau tại trung điểm mỗi đường.
JMLK không phải hình bình hành do không có hai góc đối bằng nhau.
Trong Hình 3.36, Nam di chuyển thước ê ke dọc theo đường thẳng d sao cho cạnh huyền của thước luôn nằm trên d. Khi đỉnh góc \(60^\circ \) lần lượt ở vị trí điểm \(C\) và \(D.\) Nối hai điểm \(C\) và \(D,\) Nam được một đường thẳng song song với d. Em hãy giải thích vì sao?
Phương pháp giải:
Ta đi chứng minh ABCD là hình bình hành và suy ra các cặp cạnh song song.
Lời giải chi tiết:
Ta thấy góc CAB bằng góc DBd mà hai góc này ở vị trí đồng vị.
Suy ra \(CA//DB\) mà \(CA = DB\) (do cùng bằng cạnh thước ê ke)
Nên suy ra \(AC{\rm{D}}B\) là hình bình hành
Suy ra \(CD//AB\) hay \(CD//d\left( {dpcm} \right)\)
Mục 3 của chương trình Toán 8 thường tập trung vào các kiến thức về hình học, cụ thể là các loại tứ giác đặc biệt như hình bình hành, hình chữ nhật, hình thoi và hình vuông. Việc nắm vững các tính chất, dấu hiệu nhận biết và các ứng dụng của các tứ giác này là vô cùng quan trọng để giải quyết các bài tập liên quan.
Mục 3 thường bao gồm các nội dung sau:
Để giải các bài tập trong mục 3 trang 65, 66 SGK Toán 8 một cách hiệu quả, các em cần:
Bài tập: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng AF = FC.
Giải:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 8 hoặc trên các trang web học toán online uy tín.
Việc học Toán đòi hỏi sự kiên trì, chăm chỉ và luyện tập thường xuyên. Hãy dành thời gian ôn tập lý thuyết, làm bài tập và tìm hiểu các phương pháp giải bài tập khác nhau. Đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè khi gặp khó khăn. Chúc các em học tốt môn Toán!
Tứ giác | Tính chất |
---|---|
Hình bình hành | Các cạnh đối song song và bằng nhau, các góc đối bằng nhau, hai đường chéo cắt nhau tại trung điểm của mỗi đường. |
Hình chữ nhật | Có bốn góc vuông, hai đường chéo bằng nhau. |
Hình thoi | Có bốn cạnh bằng nhau, hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường. |
Hình vuông | Vừa là hình chữ nhật, vừa là hình thoi. |