Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 8 của giaitoan.edu.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Ở bài viết này, chúng ta sẽ cùng nhau đi sâu vào giải chi tiết các bài tập trong mục 2 trang 50, 51, 52 sách giáo khoa Toán 8. Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Vẽ tam giác \(ABC\) bất kì. Vẽ đường thẳng song song với \(BC,\)
Trong Hình 6.46, \(AB\) và \(CD\) song song với nhau. Tìm độ dài \(AO\) và \(AB.\)
Phương pháp giải:
Dựa vào định lí: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Lời giải chi tiết:
Xét hai tam giác \(ABO\) và \(CDO\) , ta có:
\(CD\) cắt \(OB\) tại D
\(CD\) cắt \(OA\) tại C
\(CD//AB\)
Áp dụng định lí hai tam giác đồng dạng suy ra \(\Delta ABO\) ∽ \(\Delta CDO\)
\(\begin{array}{l} \Rightarrow \frac{{DO}}{{BO}} = \frac{{CO}}{{AO}} = \frac{{CD}}{{AB}}\\ \Leftrightarrow \frac{{15}}{{25}} = \frac{{18}}{{AO}} = \frac{9}{{AB}}\\ \Rightarrow AO = 30;AB = 15\end{array}\)
Vẽ tam giác \(ABC\) bất kì. Vẽ đường thẳng song song với \(BC,\) cắt \(AB\) tại \(D,AC\) tại \(E\) (Hình 6.43). Theo em, tam giác \(ADE\) có đồng dạng với tam giác \(ABC\) không?
Phương pháp giải:
Dựa vào định nghĩa về tam giác đồng dạng để đưa ra dự đoán.
Lời giải chi tiết:
Theo em, tam giác \(ADE\) có đồng dạng với tam giác \(ABC\) .
Cánh buồm trên thực tế và ảnh chụp của nó \(\left( {\Delta ABC} \right)\) trong hình 6.47 có thể xem là hai tam giác vuông đồng dạng. Độ dài ba cạnh của cánh buồm trên ảnh chụp là \(3,3cm;3,5cm\) và \(1,6cm.\) Trên thực tế, cạnh ngắn nhất của cánh buồm là \(4m.\) Tính độ dài hai cạnh còn lại của cánh buồm theo đơn vị mét (làm tròn kết quả đến hàng phần mười).
Phương pháp giải:
Tam giác \(A'B'C'\) được gọi là đồng dạng với tam giác \(ABC\) , kí hiệu \(\Delta A'B'C'\) ∽ \(\Delta ABC\)
\(\widehat {A'} = \widehat A;\widehat {B'} = \widehat B;\widehat {C'} = \widehat C\) và \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) .
Lời giải chi tiết:
Gọi cánh buồm trên thực tế là \(\Delta A'B'C'\) đồng dạng với \(\Delta ABC\) , ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\\\frac{{A'B'}}{{3,3}} = \frac{{A'C'}}{{3,5}} = \frac{4}{{1,6}}\\ \Rightarrow A'B' = 8,25\left( m \right)\\ \Rightarrow A'C' = 8,75\left( m \right)\end{array}\)
Vẽ tam giác \(ABC\) bất kì. Vẽ đường thẳng song song với \(BC,\) cắt \(AB\) tại \(D,AC\) tại \(E\) (Hình 6.43). Theo em, tam giác \(ADE\) có đồng dạng với tam giác \(ABC\) không?
Phương pháp giải:
Dựa vào định nghĩa về tam giác đồng dạng để đưa ra dự đoán.
Lời giải chi tiết:
Theo em, tam giác \(ADE\) có đồng dạng với tam giác \(ABC\) .
Trong Hình 6.46, \(AB\) và \(CD\) song song với nhau. Tìm độ dài \(AO\) và \(AB.\)
Phương pháp giải:
Dựa vào định lí: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Lời giải chi tiết:
Xét hai tam giác \(ABO\) và \(CDO\) , ta có:
\(CD\) cắt \(OB\) tại D
\(CD\) cắt \(OA\) tại C
\(CD//AB\)
Áp dụng định lí hai tam giác đồng dạng suy ra \(\Delta ABO\) ∽ \(\Delta CDO\)
\(\begin{array}{l} \Rightarrow \frac{{DO}}{{BO}} = \frac{{CO}}{{AO}} = \frac{{CD}}{{AB}}\\ \Leftrightarrow \frac{{15}}{{25}} = \frac{{18}}{{AO}} = \frac{9}{{AB}}\\ \Rightarrow AO = 30;AB = 15\end{array}\)
Cánh buồm trên thực tế và ảnh chụp của nó \(\left( {\Delta ABC} \right)\) trong hình 6.47 có thể xem là hai tam giác vuông đồng dạng. Độ dài ba cạnh của cánh buồm trên ảnh chụp là \(3,3cm;3,5cm\) và \(1,6cm.\) Trên thực tế, cạnh ngắn nhất của cánh buồm là \(4m.\) Tính độ dài hai cạnh còn lại của cánh buồm theo đơn vị mét (làm tròn kết quả đến hàng phần mười).
Phương pháp giải:
Tam giác \(A'B'C'\) được gọi là đồng dạng với tam giác \(ABC\) , kí hiệu \(\Delta A'B'C'\) ∽ \(\Delta ABC\)
\(\widehat {A'} = \widehat A;\widehat {B'} = \widehat B;\widehat {C'} = \widehat C\) và \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) .
Lời giải chi tiết:
Gọi cánh buồm trên thực tế là \(\Delta A'B'C'\) đồng dạng với \(\Delta ABC\) , ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\\\frac{{A'B'}}{{3,3}} = \frac{{A'C'}}{{3,5}} = \frac{4}{{1,6}}\\ \Rightarrow A'B' = 8,25\left( m \right)\\ \Rightarrow A'C' = 8,75\left( m \right)\end{array}\)
Mục 2 của chương trình Toán 8 thường tập trung vào các kiến thức về hình học, cụ thể là các loại tứ giác đặc biệt như hình bình hành, hình chữ nhật, hình thoi, hình vuông. Việc nắm vững các tính chất, dấu hiệu nhận biết và các ứng dụng của chúng là vô cùng quan trọng để giải quyết các bài tập liên quan.
Mục 2 thường bao gồm các nội dung sau:
Để giải các bài tập trong mục 2, các em cần:
Bài tập: Cho hình chữ nhật ABCD, AB = 8cm, BC = 6cm. Tính độ dài đường chéo AC.
Giải:
Vì ABCD là hình chữ nhật nên góc ABC vuông. Áp dụng định lý Pitago vào tam giác ABC, ta có:
AC2 = AB2 + BC2 = 82 + 62 = 64 + 36 = 100
Suy ra AC = √100 = 10cm
Các bài tập trong mục 2 thường có các dạng sau:
Để đạt kết quả tốt nhất, các em nên:
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết trên, các em sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 50, 51, 52 SGK Toán 8. Chúc các em học tập tốt!