Chào mừng các em học sinh đến với bài giải chi tiết mục 2 trang 63, 64 sách giáo khoa Toán 8. Tại giaitoan.edu.vn, chúng tôi cung cấp các lời giải bài tập Toán 8 được trình bày rõ ràng, dễ hiểu, giúp các em tự tin hơn trong việc học tập.
Mục tiêu của chúng tôi là hỗ trợ các em học sinh nắm vững kiến thức Toán 8, rèn luyện kỹ năng giải bài tập và đạt kết quả tốt nhất trong các kỳ thi.
Đối với hai tam giác vuông \(ABC\) và \(A'B'C'\) trong hình 6.82, em hãy cho biết:
Đối với hai tam giác vuông \(ABC\) và \(A'B'C'\) trong hình 6.82, em hãy cho biết:
1. Cặp cạnh \(AB,BC\) và \(A'B',B'C'\) có tỉ lệ với nhau không?
2. Độ dài các cạnh \(AC\) và \(A'C'\) là bao nhiêu và vì sao hai tam giác vuông này đồng dạng?
Phương pháp giải:
Xét tỉ lệ cặp cạnh \(AB,BC\) và \(A'B',B'C'\). Sau đó tính độ dài các cạnh \(AC\) và \(A'C'\) dựa vào định lí Pythagore.
Lời giải chi tiết:
1. Ta có tỉ lệ:
\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{3}{6} = \frac{1}{2}\\\frac{{BC}}{{B'C'}} = \frac{5}{{10}} = \frac{1}{2}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\end{array}\)
Vậy hai cặp cạnh này tỉ lệ với nhau
2. Xét tam giác vuông \(ABC\), ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Xét tam giác vuông \(A'B'C'\), ta có:
\(A'C' = \sqrt {B'C' - A'B'} = \sqrt {{{10}^2} - {6^2}} = 8\)
Xét hai tam giác vuông \(ABC\) và \(A'B'C'\), ta có:
\(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}} = \frac{1}{2}\)
=> \(\Delta ABC\)∽\(\Delta A'B'C'\) (c-c-c)
Chỉ ra các cặp tam giác vuông đồng dạng với nhau trong Hình 6.84.
Phương pháp giải:
Nếu cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Lời giải chi tiết:
Xét hai tam giác vuông \(ABC\) và \(GHK\), ta có:
\(\widehat B = \widehat H = 90^\circ \)
\(\begin{array}{l}\frac{{AC}}{{GK}} = \frac{7}{5}\\\frac{{CB}}{{KH}} = \frac{{3,5}}{{2,5}} = \frac{7}{5}\\ \Rightarrow \frac{{AC}}{{GK}} = \frac{{CB}}{{KH}} = \frac{7}{5}\end{array}\)
=> \(\Delta ABC\)∽\(\Delta GHK\) (cạnh huyền-cạnh góc vuông)
Đối với hai tam giác vuông \(ABC\) và \(A'B'C'\) trong hình 6.82, em hãy cho biết:
1. Cặp cạnh \(AB,BC\) và \(A'B',B'C'\) có tỉ lệ với nhau không?
2. Độ dài các cạnh \(AC\) và \(A'C'\) là bao nhiêu và vì sao hai tam giác vuông này đồng dạng?
Phương pháp giải:
Xét tỉ lệ cặp cạnh \(AB,BC\) và \(A'B',B'C'\). Sau đó tính độ dài các cạnh \(AC\) và \(A'C'\) dựa vào định lí Pythagore.
Lời giải chi tiết:
1. Ta có tỉ lệ:
\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{3}{6} = \frac{1}{2}\\\frac{{BC}}{{B'C'}} = \frac{5}{{10}} = \frac{1}{2}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\end{array}\)
Vậy hai cặp cạnh này tỉ lệ với nhau
2. Xét tam giác vuông \(ABC\), ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Xét tam giác vuông \(A'B'C'\), ta có:
\(A'C' = \sqrt {B'C' - A'B'} = \sqrt {{{10}^2} - {6^2}} = 8\)
Xét hai tam giác vuông \(ABC\) và \(A'B'C'\), ta có:
\(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}} = \frac{1}{2}\)
=> \(\Delta ABC\)∽\(\Delta A'B'C'\) (c-c-c)
Chỉ ra các cặp tam giác vuông đồng dạng với nhau trong Hình 6.84.
Phương pháp giải:
Nếu cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Lời giải chi tiết:
Xét hai tam giác vuông \(ABC\) và \(GHK\), ta có:
\(\widehat B = \widehat H = 90^\circ \)
\(\begin{array}{l}\frac{{AC}}{{GK}} = \frac{7}{5}\\\frac{{CB}}{{KH}} = \frac{{3,5}}{{2,5}} = \frac{7}{5}\\ \Rightarrow \frac{{AC}}{{GK}} = \frac{{CB}}{{KH}} = \frac{7}{5}\end{array}\)
=> \(\Delta ABC\)∽\(\Delta GHK\) (cạnh huyền-cạnh góc vuông)
Góc nghiêng \(\widehat {ABH}\) của mép mái nhà bên trái so với phương ngang và góc nghiêng \(\widehat {ACK}\) của mép mái nhà bên phải so với phương ngang trong Hình 6.85 có bằng nhau không? Vì sao?
Phương pháp giải:
Nếu cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Lời giải chi tiết:
Xét hai tam giác vuông \(ABH\) và \(ACH\), ta có:
\(\widehat H = \widehat K = 90^\circ \)
\(\begin{array}{l}\frac{{AB}}{{AC}} = \frac{9}{{4,5}} = 2\\\frac{{AH}}{{AK}} = \frac{{6 - 3}}{{6 - 4,5}} = 2\\ \Rightarrow \frac{{AB}}{{AC}} = \frac{{AH}}{{AK}} = 2\end{array}\)
=> \(\Delta ABH\)∽\(\Delta ACH\) (cạnh huyền-cạnh góc vuông)
Vậy \(\widehat {ABH} = \widehat {ACK}\) (hai cạnh tương ứng)
Góc nghiêng \(\widehat {ABH}\) của mép mái nhà bên trái so với phương ngang và góc nghiêng \(\widehat {ACK}\) của mép mái nhà bên phải so với phương ngang trong Hình 6.85 có bằng nhau không? Vì sao?
Phương pháp giải:
Nếu cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Lời giải chi tiết:
Xét hai tam giác vuông \(ABH\) và \(ACH\), ta có:
\(\widehat H = \widehat K = 90^\circ \)
\(\begin{array}{l}\frac{{AB}}{{AC}} = \frac{9}{{4,5}} = 2\\\frac{{AH}}{{AK}} = \frac{{6 - 3}}{{6 - 4,5}} = 2\\ \Rightarrow \frac{{AB}}{{AC}} = \frac{{AH}}{{AK}} = 2\end{array}\)
=> \(\Delta ABH\)∽\(\Delta ACH\) (cạnh huyền-cạnh góc vuông)
Vậy \(\widehat {ABH} = \widehat {ACK}\) (hai cạnh tương ứng)
Mục 2 của chương trình Toán 8 thường xoay quanh các kiến thức về hình học, cụ thể là các loại tứ giác đặc biệt như hình bình hành, hình chữ nhật, hình thoi, hình vuông. Việc nắm vững các tính chất, dấu hiệu nhận biết và các ứng dụng của chúng là vô cùng quan trọng để giải quyết các bài tập liên quan.
Thông thường, mục 2 trang 63, 64 SGK Toán 8 sẽ tập trung vào:
Để giải tốt các bài tập trong mục này, các em cần:
Bài tập: Cho hình chữ nhật ABCD, O là giao điểm của hai đường chéo. Gọi E là trung điểm của cạnh BC. Chứng minh rằng tam giác DOE vuông.
Giải:
Xét tam giác OBC, ta có: OB = OC (tính chất hình chữ nhật)
=> Tam giác OBC cân tại O => ∠OBC = ∠OCB
Vì E là trung điểm của BC => BE = EC
Xét tam giác OBE và tam giác OCE, ta có:
=> Tam giác OBE = Tam giác OCE (c-g-c)
=> ∠BOE = ∠COE
Ta có ∠DOE = ∠BOE + ∠COE = 2∠BOE
Trong tam giác OBE, ta có ∠BOE + ∠OBE + ∠OEB = 180°
=> ∠BOE = 180° - ∠OBE - ∠OEB
Vì ABCD là hình chữ nhật => ∠ABC = 90° => ∠OBE = 90°
=> ∠BOE = 180° - 90° - ∠OEB = 90° - ∠OEB
=> ∠DOE = 2(90° - ∠OEB) = 180° - 2∠OEB
Nếu ∠OEB = 45° thì ∠DOE = 90° => Tam giác DOE vuông.
Các em cần chú ý:
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với bài giải chi tiết này, các em sẽ tự tin hơn trong việc học tập và giải bài tập Toán 8. Chúc các em học tốt!