Chào mừng các em học sinh đến với bài giải chi tiết bài 1.5 trang 6 SGK Toán 8. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, cùng với đó là những kiến thức nền tảng cần thiết để nắm vững nội dung chương trình Toán 8.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, giúp các em học tập hiệu quả và đạt kết quả tốt nhất.
Viết hai đơn thức đồng dạng với đơn thức
Đề bài
Viết hai đơn thức đồng dạng với đơn thức \( - 2x{y^2}\) rồi tính tổng và hiệu của hai đơn thức đó
Phương pháp giải - Xem chi tiết
Tìm hai đơn thức đồng dạng với đơn thức \( - 2x{y^2}\) (hay tìm hai đơn thức có hệ số khác 0 và có phần biến giống với đơn thức \( - 2x{y^2}\))
Sử dụng tính chất phân phối của phép nhân với phép cộng tính tổng và hiệu hai đơn thức vừa tìm được.
Lời giải chi tiết
Hai đơn thức đồng dạng với \( - 2x{y^2}\) là: \(6x{y^2};\,\, - 6x{y^2}\)
Tổng hai đơn thức trên là: \(6x{y^2} + \left( { - 6x{y^2}} \right) = \left( {6 - 6} \right)x{y^2} = 0\)
Hiệu hai đơn thức trên là: \(6x{y^2} - \left( { - 6x{y^2}} \right) = \left( {6 + 6} \right)x{y^2} = 12x{y^2}\)
Bài 1.5 trang 6 SGK Toán 8 thuộc chương trình đại số lớp 8, tập trung vào việc thực hiện các phép toán với đa thức. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các quy tắc về cộng, trừ, nhân, chia đa thức, cũng như các hằng đẳng thức đáng nhớ.
Bài tập yêu cầu thực hiện các phép tính sau:
Để giải bài này, ta thực hiện cộng các đơn thức đồng dạng:
Vậy, 5x2 + 3x - 2 + 4x2 - x + 5 = 9x2 + 2x + 3
Tương tự như trên, ta cộng các đơn thức đồng dạng:
Vậy, 3x2y - 2xy2 + 5x2y + 3xy2 - x2 = 8x2y + xy2 - x2
Áp dụng công thức (a + b)(a - b) = a2 - b2 và quy tắc nhân đa thức, ta có:
(3x + 2)(x - 1) = 3x(x - 1) + 2(x - 1) = 3x2 - 3x + 2x - 2 = 3x2 - x - 2
Áp dụng quy tắc nhân đa thức, ta có:
(x + 3)(x2 - 2x + 1) = x(x2 - 2x + 1) + 3(x2 - 2x + 1) = x3 - 2x2 + x + 3x2 - 6x + 3 = x3 + x2 - 5x + 3
Các bài tập về đa thức là nền tảng quan trọng cho việc học các kiến thức nâng cao hơn trong chương trình Toán học, như phân tích đa thức thành nhân tử, giải phương trình bậc hai, và các bài toán về hàm số.
Hy vọng với hướng dẫn chi tiết này, các em học sinh đã có thể tự tin giải bài 1.5 trang 6 SGK Toán 8. Hãy luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán.