Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải chi tiết và dễ hiểu cho bài tập 1 trang 104 sách giáo khoa Toán 9 tập 1 - Cánh diều.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Đồng hồ treo tường trang trí ở Hình 29 gợi nên vị trí tương đối của đường thẳng và đường tròn. Quan sát Hình 29 và chỉ ra hình ảnh đường thẳng và đường tròn: a) Cắt nhau; b) Tiếp xúc nhau; c) Không giao nhau.
Đề bài
Đồng hồ treo tường trang trí ở Hình 29 gợi nên vị trí tương đối của đường thẳng và đường tròn. Quan sát Hình 29 và chỉ ra hình ảnh đường thẳng và đường tròn:
a) Cắt nhau;
b) Tiếp xúc nhau;
c) Không giao nhau.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào quan sát trực quan để đưa ra nhận xét.
Lời giải chi tiết
a) Cắt nhau: Đường tròn xanh lá cây to với đường thẳng màu vàng.
b) Tiếp xúc nhau: Đường tròn xanh lá cây to với đường thẳng màu trắng.
c) Không giao nhau: Đường tròn xanh lá cây nhỏ với đường thẳng màu vàng.
Bài tập 1 trang 104 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và đường thẳng song song, vuông góc.
Bài tập 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Đường thẳng có dạng y = ax + b. Hệ số góc của đường thẳng là a. Để xác định a, ta cần biết tọa độ của hai điểm thuộc đường thẳng hoặc một điểm và góc nghiêng của đường thẳng.
Ví dụ: Nếu đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2) thì hệ số góc a được tính theo công thức: a = (y2 - y1) / (x2 - x1).
Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2.
Điều này có nghĩa là hai đường thẳng có cùng hệ số góc nhưng khác tung độ gốc.
Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1 * a2 = -1.
Điều này có nghĩa là tích của hệ số góc của hai đường thẳng bằng -1.
Để viết phương trình đường thẳng đi qua điểm M(x0, y0) và có hệ số góc a, ta sử dụng công thức: y - y0 = a(x - x0).
Ví dụ: Đường thẳng đi qua điểm M(1, 2) và có hệ số góc a = 3 có phương trình: y - 2 = 3(x - 1) hay y = 3x - 1.
Hàm số bậc nhất có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.
Hệ số góc a quyết định độ dốc của đường thẳng. Nếu a > 0 thì đường thẳng đi lên, nếu a < 0 thì đường thẳng đi xuống, nếu a = 0 thì đường thẳng là đường thẳng ngang.
Tung độ gốc b là tọa độ giao điểm của đường thẳng với trục Oy.
Hy vọng bài giải bài tập 1 trang 104 SGK Toán 9 tập 1 - Cánh diều này sẽ giúp các em hiểu rõ hơn về hàm số bậc nhất và các ứng dụng của nó. Chúc các em học tập tốt!