Logo Header
  1. Môn Toán
  2. Giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tính giá trị của mỗi căn thức bậc ba sau: a. (sqrt[3]{{2x - 7}}) tại (x = - 10;x = 7,5;x = - 0,5) b. (sqrt[3]{{{x^2} + 4}}) tại (x = 0;x = 2;x = sqrt[{}]{{23}}).

Đề bài

Tính giá trị của mỗi căn thức bậc ba sau:

a. \(\sqrt[3]{{2x - 7}}\) tại \(x = - 10;x = 7,5;x = - 0,5\)

b. \(\sqrt[3]{{{x^2} + 4}}\) tại \(x = 0;x = 2;x = \sqrt[{}]{{23}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều 1

Thay giá trị vào biểu thức để tính.

Lời giải chi tiết

a. Thay \(x = - 10\) vào biểu thức, ta được:

\(\sqrt[3]{{2.\left( { - 10} \right) - 7}} = \sqrt[3]{{ - 20 - 7}} = \sqrt[3]{{ - 27}} = - 3\).

Thay \(x = 7,5\) vào biểu thức, ta được:

\(\sqrt[3]{{2.7,5 - 7}} = \sqrt[3]{{15 - 7}} = \sqrt[3]{8} = 2\).

Thay \(x = - 0,5\) vào biểu thức, ta được:

\(\sqrt[3]{{2.\left( { - 0,5} \right) - 7}} = \sqrt[3]{{ - 1 - 7}} = \sqrt[3]{{ - 8}} = - 2\).

b. Thay \(x = 0\) vào biểu thức, ta được:

\(\sqrt[3]{{{0^2} + 4}} = \sqrt[3]{4}\).

Thay \(x = 2\) vào biểu thức, ta được:

\(\sqrt[3]{{{2^2} + 4}} = \sqrt[3]{{4 + 4}} = \sqrt[3]{8} = 2\).

Thay \(x = \sqrt[{}]{{23}}\) vào biểu thức, ta được:

\(\sqrt[3]{{{{\left( {\sqrt[{}]{{23}}} \right)}^2} + 4}} = \sqrt[3]{{23 + 4}} = \sqrt[3]{{27}} = 3\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều: Hướng dẫn chi tiết

Bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:

  • Dạng tổng quát của phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0)
  • Công thức nghiệm tổng quát: x = (-b ± √(b2 - 4ac)) / 2a
  • Định lý về dấu của nghiệm: Δ = b2 - 4ac
    • Δ > 0: Phương trình có hai nghiệm phân biệt
    • Δ = 0: Phương trình có nghiệm kép
    • Δ < 0: Phương trình vô nghiệm
  • Các phương pháp giải phương trình bậc hai: Phân tích thành nhân tử, sử dụng công thức nghiệm, hoàn thành bình phương

Nội dung bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều

Bài tập 3 thường bao gồm các phương trình bậc hai với các hệ số khác nhau. Yêu cầu của bài tập là tìm nghiệm của phương trình hoặc xác định số nghiệm của phương trình.

Hướng dẫn giải chi tiết bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều

Để giải bài tập này, chúng ta sẽ áp dụng các kiến thức và phương pháp đã nêu ở trên. Dưới đây là ví dụ minh họa:

Ví dụ 1: Giải phương trình 2x2 - 5x + 2 = 0

  1. Xác định các hệ số: a = 2, b = -5, c = 2
  2. Tính delta: Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9
  3. Vì Δ > 0, phương trình có hai nghiệm phân biệt:
  4. Tính các nghiệm:
    • x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2
    • x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5
  5. Kết luận: Phương trình có hai nghiệm là x1 = 2 và x2 = 0.5

Ví dụ 2: Xác định số nghiệm của phương trình x2 - 4x + 4 = 0

  1. Xác định các hệ số: a = 1, b = -4, c = 4
  2. Tính delta: Δ = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0
  3. Vì Δ = 0, phương trình có nghiệm kép:
  4. Tính nghiệm kép: x = -b / (2a) = 4 / (2 * 1) = 2
  5. Kết luận: Phương trình có nghiệm kép là x = 2

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán, đặc biệt là khi tính căn bậc hai.
  • Nếu gặp khó khăn, hãy tham khảo các tài liệu học tập hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các đề thi thử.

Kết luận

Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài tập 3 trang 65 SGK Toán 9 tập 1 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 9