Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 41 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Giải các bất phương trình: a. (frac{{8 - 3x}}{2} - x < 5) b. (3 - 2x - frac{{6 + 4x}}{3} > 0) c. (0,7x + frac{{2x - 4}}{3} - frac{x}{6} > 1)
Đề bài
Giải các bất phương trình:
a. \(\frac{{8 - 3x}}{2} - x < 5\)
b. \(3 - 2x - \frac{{6 + 4x}}{3} > 0\)
c. \(0,7x + \frac{{2x - 4}}{3} - \frac{x}{6} > 1\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào cách giải bất phương trình tổng quát để giải bất phương trình.
Lời giải chi tiết
a.
\(\begin{array}{*{20}{l}}{\frac{{8 - 3x}}{2} - x < 5}\\{\frac{{8 - 3x}}{2} - \frac{{2x}}{2} < \frac{{10}}{2}}\\{\frac{{8 - 3x - 2x}}{2} - \frac{{10}}{2} < 0}\\{\frac{{8 - 3x - 2x - 10}}{2} < 0}\\{\frac{{ - 5x - 2}}{2} < 0}\\{ - 5x - 2 < 0}\\{ - 5x < 2}\\{x > \frac{{ - 2}}{5}}\end{array}\)
Vậy nghiệm của bất phương trình là \(x > \frac{{ - 2}}{5}\).
b.
\(\begin{array}{*{20}{l}}{3 - 2x - \frac{{6 + 4x}}{3} > 0}\\{\frac{9}{3} - \frac{{6x}}{3} - \frac{{6 + 4x}}{3} > 0}\\{\frac{{9 - 6x - 6 - 4x}}{3} > 0}\end{array}\)
\(\begin{array}{*{20}{l}}{\frac{{ - 10x + 3}}{3} > 0}\\\begin{array}{l} - 10x + 3 > 0\\ - 10x > - 3\end{array}\\{x < \frac{3}{{10}}}\end{array}\)
Vậy nghiệm của bất phương trình là \(x < \frac{3}{{10}}\).
c.
\(\begin{array}{*{20}{l}}{0,7x + \frac{{2x - 4}}{3} - \frac{x}{6} > 1}\\\begin{array}{l}\frac{{4,2x}}{6} + \frac{{2.\left( {2x - 4} \right)}}{6} - \frac{x}{6} > \frac{6}{6}\\\frac{{4,2x + 4x - 8 - x - 6}}{6} > 0\end{array}\\{4,2x + 4x - 8 - x - 6 > 0}\\{7,2x - 14 > 0}\\{7,2x > 14}\\{x > \frac{{35}}{{18}}}\end{array}\)
Vậy nghiệm của bất phương trình là \(x > \frac{{35}}{{18}}\).
Bài tập 3 trang 41 SGK Toán 9 tập 1 - Cánh diều thuộc chương Hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Để xác định một hàm số có phải là hàm số bậc nhất hay không, ta cần kiểm tra xem nó có dạng y = ax + b hay không, với a và b là các số thực và a ≠ 0. Trong bài tập này, học sinh cần phân tích các hàm số đã cho và xác định xem chúng có thỏa mãn điều kiện trên hay không.
Sau khi xác định được hàm số bậc nhất, học sinh cần tìm hệ số a và b. Hệ số a cho biết độ dốc của đường thẳng, còn hệ số b cho biết tung độ gốc. Để tìm hệ số a và b, học sinh có thể sử dụng các phương pháp sau:
Sau khi tìm được hệ số a và b, học sinh có thể vẽ đồ thị hàm số. Để vẽ đồ thị, ta cần xác định ít nhất hai điểm thuộc đường thẳng. Sau đó, nối hai điểm này lại với nhau để được đồ thị hàm số.
Giả sử ta có hàm số y = 2x + 1. Để vẽ đồ thị hàm số này, ta có thể xác định hai điểm A(0, 1) và B(1, 3). Sau đó, nối hai điểm này lại với nhau để được đồ thị hàm số.
Khi giải bài tập về hàm số bậc nhất, học sinh cần lưu ý những điều sau:
Để củng cố kiến thức về hàm số bậc nhất, học sinh có thể làm thêm các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các tài liệu tham khảo khác.
Bài tập 3 trang 41 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các bạn học tốt!
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
a | Hệ số góc |
b | Tung độ gốc |