Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 9.
Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu sắc kiến thức và tự tin giải quyết các bài toán tương tự.
Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0).
Đề bài
Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:
a. \(\sqrt {25\left( {a + 1} \right)_{}^2} \) với \(a > - 1\);
b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} \) với \(x > 5\);
c. \(\sqrt {2b} .\sqrt {32b} \) với \(b > 0\);
d. \(\sqrt {3c} .\sqrt {27c_{}^3} \) với \(c > 0\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng kiến thức “Với các biểu thức A, B không âm, ta có: \(\sqrt {A.B} = \sqrt A .\sqrt B \)” để giải bài toán.
Lời giải chi tiết
a. \(\sqrt {25\left( {a + 1} \right)_{}^2} = \sqrt {25} .\sqrt {\left( {a + 1} \right)_{}^2} = 5.\left| {a + 1} \right| = 5\left( {a + 1} \right)\) (Vì \(a > - 1\) nên \(a + 1 > 0\)).
b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} = \sqrt {x_{}^2} .\sqrt {\left( {x - 5} \right)_{}^2} = \left| x \right|.\left| {x - 5} \right| = x\left( {x - 5} \right)\) (Vì \(x > 5\) nên \(x - 5 > 0\)).
c. \(\sqrt {2b} .\sqrt {32b} = \sqrt {2b.32b} = \sqrt {64b_{}^2} = \sqrt {64} .\sqrt {b_{}^2} = 8\left| b \right| = 8b\) (Do \(b > 0\)).
d. \(\sqrt {3c} .\sqrt {27c_{}^3} = \sqrt {3c.27c_{}^3} = \sqrt {81c_{}^4} = \sqrt {81} .\sqrt {c_{}^4} = 9.\left| {c_{}^2} \right| = 9c_{}^2\).
Bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và đường thẳng song song, vuông góc.
Bài tập 2 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Đường thẳng có dạng y = 2x - 3. Hệ số góc của đường thẳng là a = 2.
Để hai đường thẳng y = 2x - 3 và y = (m - 1)x + 5 song song, ta cần:
m - 1 = 2 và 5 ≠ -3
=> m = 3
Để hai đường thẳng y = 2x - 3 và y = (m - 1)x + 5 vuông góc, ta cần:
2 * (m - 1) = -1
=> m - 1 = -1/2
=> m = 1/2
Để củng cố kiến thức về hàm số bậc nhất và các điều kiện song song, vuông góc, các em có thể làm thêm các bài tập sau:
Để học tốt môn Toán 9, các em cần:
Hy vọng bài giải chi tiết bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều này sẽ giúp các em hiểu rõ hơn về kiến thức và tự tin hơn trong quá trình học tập. Chúc các em học tốt!