Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1, trang 19, 20, 21 sách giáo khoa Toán 9 tập 1 - Cánh diều.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp cho các em những phương pháp giải bài tập hiệu quả nhất, giúp các em nắm vững kiến thức và đạt kết quả cao trong học tập.
Cho hệ phương trình: (left{ begin{array}{l} - x + y = 3,,,,,,left( 1 right)3x + 2y = 11,,left( 2 right)end{array} right.,,,,,,,,left( I right)) Hãy giải hệ phương trình (I) theo các bước sau: a. Từ phương trình (1), ta biểu diễn (y) theo (x) rồi thế vào phương trình (2) để được phương trình ẩn (x). b. Giải phương trình (ẩn (x)) vừa nhận được để tìm giá trị của (x). c. Thế giá trị vừa tìm được của (x) vào biểu thức biểu diễn (y) theo (x)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 19 SGK Toán 9 Cánh diều
Cho hệ phương trình: \(\left\{ \begin{array}{l} - x + y = 3\,\,\,\,\,\,\left( 1 \right)\\3x + 2y = 11\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\,\left( I \right)\)
Hãy giải hệ phương trình (I) theo các bước sau:
a. Từ phương trình (1), ta biểu diễn \(y\) theo \(x\) rồi thế vào phương trình (2) để được phương trình ẩn \(x\).
b. Giải phương trình (ẩn \(x\)) vừa nhận được để tìm giá trị của \(x\).
c. Thế giá trị vừa tìm được của \(x\) vào biểu thức biểu diễn \(y\) theo \(x\) ở câu a để tìm giá trị của \(y\). Từ đó, kết luận nghiệm của hệ phương trình (I).
Phương pháp giải:
Thực hiện từng bước theo yêu cầu đề bài để giải bài toán.
Lời giải chi tiết:
a.
+ Từ phương trình (1), ta có: \(y = 3 + x\) (3)
+ Thay vào phương trình (2), ta được: \(3x + 2.\left( {3 + x} \right) = 11\) (4)
b.
Giải phương trình (4): \(3x + 6 + 2x = 11\)
\(\begin{array}{l}5x = 5\\x = 1\end{array}\)
c. Thay giá trị \(x = 1\) vào phương trình (3), ta có:
\(y = 3 + 1 = 4\).
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {1;4} \right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 20 SGK Toán 9 Cánh diều
Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 3y = 2\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 5y = 1\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (1), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (2);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (1), ta có: \(x = 2 + 3y\) (3)
+ Thay vào phương trình (2), ta được: \( - 2.\left( {2 + 3y} \right) + 5y = 1\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( {2 + 3y} \right) + 5y = 1\\ - 4 - 6y + 5y = 1\\ - y = 5\\y = - 5\end{array}\)
+ Thay giá trị \(y = - 5\) vào phương trình (3), ta có:
\(x = 2 + 3.\left( { - 5} \right) = 2 - 15 = - 13\)
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( { - 13; - 5} \right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 20 SGK Toán 9 Cánh diều
Giải phương trình: \(\left\{ \begin{array}{l} - 2x + 4y = 5\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - x + 2y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (2), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (1);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (2), ta có: \(x = - 1 + 2y\) (3)
+ Thay vào phương trình (1), ta được: \( - 2.\left( { - 1 + 2y} \right) + 4y = 5\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( { - 1 + 2y} \right) + 4y = 5\\2 - 4y + 4y = 5\\0y = 3\end{array}\)
Do đó, phương trình (4) vô nghiệm. Vậy hệ phương trình đã cho vô nghiệm.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 21 SGK Toán 9 Cánh diều
Giải phương trình: \(\left\{ \begin{array}{l}x - 3y = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 6y = - 8\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (1), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (2);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (1), ta có: \(x = 4 + 3y\) (3)
+ Thay vào phương trình (2), ta được: \( - 2.\left( { 4 + 3y} \right) + 6y = - 8\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( { 4 + 3y} \right) + 6y = - 8\\ - 8- 6y + 6y = - 8\\0y = 0\end{array}\)
Do đó, phương trình (4) có vô số nghiệm. Vậy hệ phương trình đã cho có vô số nghiệm.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 19 SGK Toán 9 Cánh diều
Cho hệ phương trình: \(\left\{ \begin{array}{l} - x + y = 3\,\,\,\,\,\,\left( 1 \right)\\3x + 2y = 11\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\,\left( I \right)\)
Hãy giải hệ phương trình (I) theo các bước sau:
a. Từ phương trình (1), ta biểu diễn \(y\) theo \(x\) rồi thế vào phương trình (2) để được phương trình ẩn \(x\).
b. Giải phương trình (ẩn \(x\)) vừa nhận được để tìm giá trị của \(x\).
c. Thế giá trị vừa tìm được của \(x\) vào biểu thức biểu diễn \(y\) theo \(x\) ở câu a để tìm giá trị của \(y\). Từ đó, kết luận nghiệm của hệ phương trình (I).
Phương pháp giải:
Thực hiện từng bước theo yêu cầu đề bài để giải bài toán.
Lời giải chi tiết:
a.
+ Từ phương trình (1), ta có: \(y = 3 + x\) (3)
+ Thay vào phương trình (2), ta được: \(3x + 2.\left( {3 + x} \right) = 11\) (4)
b.
Giải phương trình (4): \(3x + 6 + 2x = 11\)
\(\begin{array}{l}5x = 5\\x = 1\end{array}\)
c. Thay giá trị \(x = 1\) vào phương trình (3), ta có:
\(y = 3 + 1 = 4\).
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {1;4} \right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 20 SGK Toán 9 Cánh diều
Giải hệ phương trình: \(\left\{ \begin{array}{l}x - 3y = 2\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 5y = 1\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (1), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (2);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (1), ta có: \(x = 2 + 3y\) (3)
+ Thay vào phương trình (2), ta được: \( - 2.\left( {2 + 3y} \right) + 5y = 1\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( {2 + 3y} \right) + 5y = 1\\ - 4 - 6y + 5y = 1\\ - y = 5\\y = - 5\end{array}\)
+ Thay giá trị \(y = - 5\) vào phương trình (3), ta có:
\(x = 2 + 3.\left( { - 5} \right) = 2 - 15 = - 13\)
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( { - 13; - 5} \right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 20 SGK Toán 9 Cánh diều
Giải phương trình: \(\left\{ \begin{array}{l} - 2x + 4y = 5\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - x + 2y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (2), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (1);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (2), ta có: \(x = - 1 + 2y\) (3)
+ Thay vào phương trình (1), ta được: \( - 2.\left( { - 1 + 2y} \right) + 4y = 5\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( { - 1 + 2y} \right) + 4y = 5\\2 - 4y + 4y = 5\\0y = 3\end{array}\)
Do đó, phương trình (4) vô nghiệm. Vậy hệ phương trình đã cho vô nghiệm.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 21 SGK Toán 9 Cánh diều
Giải phương trình: \(\left\{ \begin{array}{l}x - 3y = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 6y = - 8\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Phương pháp giải:
+ Dựa vào phương trình (1), biểu diễn ẩn \(x\) theo \(y\) rồi thay vào phương trình (2);
+ Giải phương trình một ẩn để tìm giá trị của \(y\);
+ Thế giá trị vừa tìm được vào phương trình vừa biểu diễn \(x\) để tìm \(x\);
+ Kết luận nghiệm.
Lời giải chi tiết:
+ Từ phương trình (1), ta có: \(x = 4 + 3y\) (3)
+ Thay vào phương trình (2), ta được: \( - 2.\left( { 4 + 3y} \right) + 6y = - 8\) (4)
+ Giải phương trình (4):
\(\begin{array}{l} - 2\left( { 4 + 3y} \right) + 6y = - 8\\ - 8- 6y + 6y = - 8\\0y = 0\end{array}\)
Do đó, phương trình (4) có vô số nghiệm. Vậy hệ phương trình đã cho có vô số nghiệm.
Mục 1 của chương trình Toán 9 tập 1 - Cánh diều tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Đây là nền tảng quan trọng để học sinh tiếp cận các kiến thức nâng cao hơn trong chương trình. Việc nắm vững các khái niệm, tính chất và phương pháp giải bài tập trong mục này là vô cùng cần thiết.
Bài 1 yêu cầu học sinh xác định hệ số góc của các hàm số bậc nhất cho trước. Để giải bài này, học sinh cần nắm vững dạng tổng quát của hàm số bậc nhất: y = ax + b, trong đó a là hệ số góc.
Ví dụ: Cho hàm số y = 2x - 3. Hệ số góc của hàm số là a = 2.
Bài 2 yêu cầu học sinh vẽ đồ thị của các hàm số bậc nhất. Để vẽ đồ thị, học sinh cần xác định ít nhất hai điểm thuộc đồ thị. Có thể chọn hai điểm bất kỳ, hoặc sử dụng các điểm đặc biệt như giao điểm với trục tọa độ.
Ví dụ: Để vẽ đồ thị của hàm số y = x + 1, ta có thể chọn hai điểm A(0; 1) và B(1; 2). Nối hai điểm này lại, ta được đồ thị của hàm số.
Bài 3 là một bài toán ứng dụng, yêu cầu học sinh sử dụng kiến thức về hàm số bậc nhất để giải quyết một tình huống thực tế. Để giải bài này, học sinh cần đọc kỹ đề bài, xác định các yếu tố liên quan đến hàm số, và lập phương trình để giải.
Ví dụ: Một người đi xe đạp với vận tốc không đổi là 15 km/h. Hãy viết hàm số biểu thị quãng đường đi được của người đó theo thời gian.
Giải: Gọi x là thời gian (giờ) và y là quãng đường đi được (km). Hàm số biểu thị quãng đường đi được của người đó theo thời gian là y = 15x.
Học Toán không chỉ là việc học thuộc công thức mà còn là việc hiểu bản chất của vấn đề. Hãy cố gắng suy nghĩ, phân tích và tìm tòi để giải quyết các bài toán một cách sáng tạo. Đừng ngại thử nghiệm và mắc lỗi, vì đó là cách tốt nhất để học hỏi và tiến bộ.
Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!
Bài tập | Mức độ khó | Gợi ý giải |
---|---|---|
Bài 1 (Trang 19) | Dễ | Xác định hệ số góc của hàm số. |
Bài 2 (Trang 20) | Trung bình | Vẽ đồ thị hàm số bằng cách xác định hai điểm. |
Bài 3 (Trang 21) | Khó | Lập phương trình biểu diễn mối quan hệ giữa các đại lượng. |