Chào mừng bạn đến với bài học lý thuyết về Phương trình bậc nhất hai ẩn và Hệ hai phương trình bậc nhất hai ẩn trong chương trình Toán 9 Cánh diều. Bài học này sẽ cung cấp cho bạn những kiến thức nền tảng quan trọng để giải quyết các bài toán liên quan.
Chúng ta sẽ cùng nhau tìm hiểu định nghĩa, các dạng phương trình, cách giải và ứng dụng của kiến thức này trong thực tế. Hãy cùng bắt đầu!
1. Phương trình bậc nhất hai ẩn Khái niệm phương trình bậc nhất hai ẩn
1. Phương trình bậc nhất hai ẩn
Khái niệm phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn x và y là hệ thức dạng \(ax + by = c\), trong đó a, b và c là các số cho trước, \(a \ne 0\) hoặc \(b \ne 0\). |
Ví dụ: \(2x + 3y = 4\), \(0x + 2y = 3\), \(x + 0y = 2\) là các phương trình bậc nhất hai ẩn.
Nghiệm của phương trình bậc nhất hai ẩn
Cho phương trình bậc nhất hai ẩn x, y: \(ax + by = c\). Nếu \(a{x_0} + b{y_0} = c\) là một khẳng định đúng thì cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của phương trình \(ax + by = c\). |
Ví dụ: Cặp số \(( - 1;2)\) là nghiệm của phương trình \(2x + 3y = 4\) vì \(2.\left( { - 1} \right) + 3.2 = - 2 + 6 = 4\).
Cặp số \((1;2)\) không là nghiệm của phương trình \(2x + 3y = 4\) vì
\(2.1 + 3.2 = 2 + 6 = 8 \ne 4\).
Chú ý:
Ta cũng áp dụng được quy tắc chuyển vế, quy tắc nhân đã biết ở phương trình bậc nhất một ẩn để biến đổi phương trình bậc nhất hai ẩn.
Biểu diễn nghiệm trên mặt phẳng tọa độ Oxy
- Trong mặt phẳng tọa độ Oxy, mỗi nghiệm của phương trình \(ax + by = c\) được biểu diễn bởi một điểm. Nghiệm \(\left( {{x_0};{y_0}} \right)\) được biểu diễn bởi điểm có tọa độ \(\left( {{x_0};{y_0}} \right)\).
- Mỗi nghiệm của phương trình \(ax + 0y = c\left( {a \ne 0} \right)\) được biểu diễn bởi điểm có tọa độ \(\left( {\frac{c}{a};{y_0}} \right)\) \(\left( {{y_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_1}:x = \frac{c}{a}\). Đường thẳng \({d_1}\) là đường thẳng đi qua điểm \(\frac{c}{a}\) trên trục Ox và vuông góc với trục Ox.
- Mỗi nghiệm của phương trình \(0x + by = c\left( {b \ne 0} \right)\) được biểu diễn bởi một điểm có tọa độ \(\left( {{x_0};\frac{c}{b}} \right)\left( {{x_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_2}:y = \frac{c}{b}\). Đường thẳng \({d_2}\) là đường thẳng đi qua điểm \(\frac{c}{b}\) trên trục Oy và vuông góc với trục Oy.
- Mỗi nghiệm của phương trình \(ax + by = c\left( {a \ne 0,b \ne 0} \right)\) được biểu diễn bởi một điểm nằm trên đường thẳng \({d_3}:y = - \frac{a}{b}x + \frac{c}{b}\).
Ví dụ:
Nghiệm của phương trình \( - 3x + y = 2\) được biểu diễn bởi đường thẳng d: \(y = 3x + 2\).
Nghiệm của phương trình \(0x + y = - 2\) được biểu diễn bởi đường thẳng d: \(y = - 2\) vuông góc với Oy tại điểm \(M\left( {0; - 2} \right)\).
Nghiệm của phương trình \(2x + 0y = 3\) được biểu diễn bởi đường thẳng d: \(x = 1,5\) vuông góc với Ox tại điểm \(N\left( {1,5;0} \right)\).
2. Hệ hai phương trình bậc nhất hai ẩn
Khái niệm hệ hai phương trình bậc nhất hai ẩn
Hệ hai phương trình bậc nhất hai ẩn x, y có dạng: \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.(I)\), ở đó mỗi phương trình \(ax + by = c\) và \(a'x + b'y = c'\) đều là phương trình bậc nhất hai ẩn. |
Ví dụ: Hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}3x = 1\\x - y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}4x - y = 3\\3y = 6\end{array} \right.\) là các hệ phương trình bậc nhất hai ẩn.
Nghiệm của hệ hai phương trình bậc nhất hai ẩn
Nếu \(\left( {{x_0};{y_0}} \right)\) là nghiệm của từng phương trình trong hệ (I) thì cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ (I). Giải hệ phương trình là tìm tất cả các nghiệm của hệ phương trình đó. |
Ví dụ: Cặp số (1; 2) là một nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), vì:
\(2x - y = 2.1 - 2 = 0\) nên (1; 2) là nghiệm của phương trình thứ nhất.
\(x + y = 1 + 2 = 3\) nên (1; 2) là nghiệm của phương trình thứ hai.
Phương trình bậc nhất hai ẩn là phương trình có dạng tổng quát ax + by = c, trong đó a, b, c là các số thực và a, b không đồng thời bằng 0. x và y là các ẩn số. Việc hiểu rõ dạng phương trình này là bước đầu tiên để giải quyết các bài toán liên quan.
Một phương trình bậc nhất hai ẩn là một biểu thức toán học thể hiện mối quan hệ giữa hai biến số (x và y) thông qua các phép toán cộng, trừ và nhân với các hệ số. Dạng tổng quát của phương trình bậc nhất hai ẩn là ax + by = c, với a, b, c là các số thực và a, b ≠ 0.
Nghiệm của phương trình bậc nhất hai ẩn là một cặp số (x0; y0) sao cho khi thay x = x0 và y = y0 vào phương trình, phương trình được nghiệm đúng. Ví dụ, nếu phương trình là 2x + y = 5, thì cặp số (1; 3) là một nghiệm của phương trình vì 2(1) + 3 = 5.
Hệ hai phương trình bậc nhất hai ẩn là một tập hợp gồm hai phương trình bậc nhất hai ẩn, được viết dưới dạng:
Nghiệm của hệ phương trình là một cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình trong hệ.
Có hai phương pháp phổ biến để giải hệ hai phương trình bậc nhất hai ẩn:
Phương trình và hệ phương trình bậc nhất hai ẩn có nhiều ứng dụng trong thực tế, ví dụ như:
Ví dụ 1: Giải hệ phương trình sau bằng phương pháp thế:
x + y = 5
2x - y = 1
Giải: Từ phương trình x + y = 5, ta có y = 5 - x. Thay vào phương trình thứ hai, ta được:
2x - (5 - x) = 1
2x - 5 + x = 1
3x = 6
x = 2
Thay x = 2 vào y = 5 - x, ta được y = 5 - 2 = 3.
Vậy nghiệm của hệ phương trình là (2; 3).
Ví dụ 2: Giải hệ phương trình sau bằng phương pháp cộng đại số:
3x + 2y = 7
x - 2y = 1
Giải: Cộng hai phương trình, ta được:
(3x + 2y) + (x - 2y) = 7 + 1
4x = 8
x = 2
Thay x = 2 vào phương trình x - 2y = 1, ta được:
2 - 2y = 1
2y = 1
y = 1/2
Vậy nghiệm của hệ phương trình là (2; 1/2).
Để củng cố kiến thức, bạn hãy tự giải các bài tập sau:
Hy vọng bài học này đã giúp bạn hiểu rõ hơn về lý thuyết Phương trình bậc nhất hai ẩn và Hệ hai phương trình bậc nhất hai ẩn Toán 9 Cánh diều. Chúc bạn học tốt!