Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều

Giải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều

Giải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 39 sách giáo khoa Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Trên mặt phẳng cho 5 điểm phân biệt A, B, C, D, E trong đó không có 3 điểm nào thẳng hàng. Hai điểm A, B được tô màu đỏ, ba điểm C, D, E được tô màu xanh. Bạn Châu chọn ra ngẫu nhiên một điểm tô màu đỏ và một điểm tô màu xanh (trong 5 điểm đó) để nối thành một đoạn thẳng. a) Liệt kê các cách chọn mà bạn Châu có thể thực hiện. b) Tính xác suất của biến cố sau: P: “Trong 2 điểm được chọn ra, có điểm A”. Q: “Trong 2 điểm được chọn ra, không có điểm C”.

Đề bài

Trên mặt phẳng cho 5 điểm phân biệt A, B, C, D, E trong đó không có 3 điểm nào thẳng hàng. Hai điểm A, B được tô màu đỏ, ba điểm C, D, E được tô màu xanh. Bạn Châu chọn ra ngẫu nhiên một điểm tô màu đỏ và một điểm tô màu xanh (trong 5 điểm đó) để nối thành một đoạn thẳng.

a) Liệt kê các cách chọn mà bạn Châu có thể thực hiện.

b) Tính xác suất của biến cố sau:

P: “Trong 2 điểm được chọn ra, có điểm A”.

Q: “Trong 2 điểm được chọn ra, không có điểm C”.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều 1

a)Nêu các khả năng có thể xảy ra khi chọn ngẫu nhiên một điểm tô màu đỏ và một điểm tô màu xanh.

b) Bước 1: Đếm số kết quả có thể xảy ra.

Bước 2: Đếm số kết quả thận lợi cho từng biến cố.

Bước 3: Lập tỉ số giữa số liệu ở bước 1 và bước 2.

Lời giải chi tiết

a) Có 6 cách chọn có thể thực hiện là: AC, AD, AE, BC, BD, BE.

b) Có 3 kết quả thuận lợi cho biến cố P: “Trong 2 điểm được chọn ra, có điểm A” là: AC, AD, AE.

Vậy xác suất của biến cố P là \(P(P) = \frac{3}{6} = \frac{1}{2}\)

c) Có 4 kết quả thuận lợi cho biến cố Q: “Trong 2 điểm được chọn ra, không có điểm C” là: AD, AE, BD, BE.

Vậy xác suất của biến cố Q là \(P(Q) = \frac{4}{6} = \frac{2}{3}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều: Tổng quan

Bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hệ số góc và đường thẳng song song, vuông góc.

Nội dung bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều

Bài tập 5 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định hệ số góc của đường thẳng cho trước.
  • Tìm điều kiện để hai đường thẳng song song.
  • Tìm điều kiện để hai đường thẳng vuông góc.
  • Viết phương trình đường thẳng thỏa mãn các điều kiện cho trước.

Lời giải chi tiết bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều

Câu a)

Đường thẳng có dạng y = ax + b. Hệ số góc của đường thẳng là a. Để xác định a, ta cần tìm hai điểm thuộc đường thẳng và áp dụng công thức tính hệ số góc: a = (y2 - y1) / (x2 - x1).

Ví dụ, nếu đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), thì hệ số góc a = (y2 - y1) / (x2 - x1).

Câu b)

Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2. Điều này có nghĩa là hai đường thẳng có cùng hệ số góc nhưng khác tung độ gốc.

Câu c)

Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1 * a2 = -1. Điều này có nghĩa là tích của hai hệ số góc bằng -1.

Câu d)

Để viết phương trình đường thẳng đi qua điểm M(x0, y0) và có hệ số góc a, ta sử dụng công thức: y - y0 = a(x - x0). Thay x0 và y0 bằng tọa độ của điểm M và a bằng hệ số góc đã cho, ta sẽ có phương trình đường thẳng cần tìm.

Ví dụ minh họa

Giả sử chúng ta có đường thẳng y = 2x + 3. Hệ số góc của đường thẳng này là 2.

Để tìm đường thẳng song song với đường thẳng này, ta cần chọn một hệ số góc khác là 2. Ví dụ, đường thẳng y = 2x + 5 song song với đường thẳng y = 2x + 3.

Để tìm đường thẳng vuông góc với đường thẳng y = 2x + 3, ta cần chọn một hệ số góc sao cho tích của nó với 2 bằng -1. Hệ số góc đó là -1/2. Ví dụ, đường thẳng y = (-1/2)x + 1 vuông góc với đường thẳng y = 2x + 3.

Mẹo giải bài tập

  • Nắm vững định nghĩa và tính chất của hàm số bậc nhất.
  • Hiểu rõ điều kiện để hai đường thẳng song song và vuông góc.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng công thức một cách chính xác.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể giải thêm các bài tập tương tự trong SGK Toán 9 tập 2 - Cánh diều hoặc các đề thi thử Toán 9.

Kết luận

Bài tập 5 trang 39 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc nhất và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả.

Khái niệmGiải thích
Hàm số bậc nhấtHàm số có dạng y = ax + b, trong đó a và b là các số thực.
Hệ số gócSố a trong hàm số y = ax + b.
Đường thẳng song songHai đường thẳng không có điểm chung.
Đường thẳng vuông gócHai đường thẳng cắt nhau và tạo thành góc 90 độ.

Tài liệu, đề thi và đáp án Toán 9