Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải chi tiết và dễ hiểu cho bài tập 3 trang 110 sách giáo khoa Toán 9 tập 1 chương trình Cánh diều.
Chúng tôi hiểu rằng việc tự học và làm bài tập đôi khi gặp nhiều khó khăn. Vì vậy, đội ngũ giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho đường tròn (left( O right)) và điểm (M) nằm ngoài đường tròn. Hai đường thẳng thẳng (c,d) đi qua (M) lần lượt tiếp xúc với (left( O right)) tại (A,B). Tia phân giác của góc (MAB) cắt (MO) tại (I). Chứng minh điểm (I) cách đều ba đường thẳng (MA,MB) và (AB).
Đề bài
Cho đường tròn \(\left( O \right)\) và điểm \(M\) nằm ngoài đường tròn. Hai đường thẳng thẳng \(c,d\) đi qua \(M\) lần lượt tiếp xúc với \(\left( O \right)\) tại \(A,B\). Tia phân giác của góc \(MAB\) cắt \(MO\) tại \(I\). Chứng minh điểm \(I\) cách đều ba đường thẳng \(MA,MB\) và \(AB\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào tính chất tiếp tuyến để chứng minh.
Lời giải chi tiết
Do \(MA,MB\) là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MO\) là tia phân giác của \(\widehat {AMB}\) hay \(MI\) là tia phân giác của \(\widehat {AMB}\).
Xét tam giác \(AMB\) có:
\(AI\) là tia phân giác của góc \(MAB\);
\(MI\) là tia phân giác của góc \(AMB\).
Suy ra \(I\) là giao điểm của 3 đường phân giác tam giác \(AMB\).
Vậy \(I\) cách đều \(MA,MB,AB\).
Bài tập 3 trang 110 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài tập 3 bao gồm các ý nhỏ khác nhau, mỗi ý yêu cầu học sinh thực hiện một thao tác cụ thể liên quan đến hàm số bậc nhất. Cụ thể:
Để giải quyết bài tập 3 trang 110 SGK Toán 9 tập 1 - Cánh diều một cách hiệu quả, học sinh cần nắm vững các kiến thức và kỹ năng sau:
Ý a:
Giả sử hàm số bậc nhất có dạng y = ax + b. Vì đồ thị của hàm số đi qua hai điểm A(x1; y1) và B(x2; y2), ta có hệ phương trình sau:
y1 = ax1 + b
y2 = ax2 + b
Giải hệ phương trình này, ta sẽ tìm được giá trị của a và b, từ đó xác định được hàm số bậc nhất.
Ý b:
Để tính giá trị của y khi biết giá trị của x và các hệ số a, b, ta chỉ cần thay giá trị của x vào công thức hàm số y = ax + b.
Ý c:
Vì đồ thị của hàm số đi qua điểm C(x0; y0) và có hệ số b đã biết, ta có phương trình:
y0 = ax0 + b
Giải phương trình này, ta sẽ tìm được giá trị của a.
Ví dụ: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số đi qua hai điểm A(1; 2) và B(2; 4).
Lời giải:
Thay tọa độ của hai điểm A và B vào phương trình y = ax + b, ta được hệ phương trình:
2 = a(1) + b
4 = a(2) + b
Giải hệ phương trình này, ta được a = 2 và b = 0. Vậy hàm số bậc nhất cần tìm là y = 2x.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể tự giải các bài tập sau:
Bài tập 3 trang 110 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về hàm số bậc nhất vào giải quyết các bài toán thực tế. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập và làm bài tập.