Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 25 SGK Toán 9 tập 1 - Cánh diều. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình học tập và ôn luyện môn Toán 9.
Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu sắc kiến thức và tự tin giải quyết các bài tập tương tự.
Giải hệ phương trình sau bằng phương pháp cộng đại số: a. (left{ begin{array}{l}2x + y = 4x - y = 2end{array} right.); b. (left{ begin{array}{l}4x + 5y = 112x - 3y = 0end{array} right.); c. (left{ begin{array}{l}12x + 18y = - 24 - 2x - 3y = 4end{array} right.); d. (left{ begin{array}{l}x - 3y = 5 - 2x + 6y = 10end{array} right.).
Đề bài
Giải hệ phương trình sau bằng phương pháp cộng đại số:
a. \(\left\{ \begin{array}{l}2x + y = 4\\x - y = 2\end{array} \right.\);
b. \(\left\{ \begin{array}{l}4x + 5y = 11\\2x - 3y = 0\end{array} \right.\);
c. \(\left\{ \begin{array}{l}12x + 18y = - 24\\ - 2x - 3y = 4\end{array} \right.\);
d. \(\left\{ \begin{array}{l}x - 3y = 5\\ - 2x + 6y = 10\end{array} \right.\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Làm cho hai hệ số của một ẩn nào đó bằng nhau hoặc đối nhau;
+ Đưa về phương trình một ẩn;
+ Tìm ẩn còn lại và kết luận.
Lời giải chi tiết
a. \(\left\{ \begin{array}{l}2x + y = 4\,\,\,\,\left( 1 \right)\\x - y = 2\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Cộng từng vế hai phương trình (1) và (2), ta nhận được phương trình:
\(3x = 6\), tức là \(x = 2\)
Thế \(x = 2\) vào phương trình (2), ta nhận được phương trình: \(2 - y = 2\) (3)
Giải phương trình (3), ta có: \(y = 0\).
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;0} \right)\).
b. \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\left( 1 \right)\\2x - 3y = 0\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình (2) với 2 và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\,\,\,\left( 3 \right)\\4x - 6y = 0\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)
Trừ từng vế hai phương trình (3) và (4), ta nhận được phương trình: \(11y = 11\) (5)
Giải phương trình (5), ta có:
\(\begin{array}{l}11y = 11\\\,\,\,\,\,y = 1\end{array}\)
Thế giá trị \(y = 1\) vào phương trình (2), ta được phương trình: \(2x - 3.1 = 0\) (6)
Giải phương trình (6):
\(\begin{array}{l}2x - 3.1 = 0\\\,\,\,\,\,\,\,\,\,\,\,2x = 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{3}{2}\end{array}\)
Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {\frac{3}{2};1} \right)\).
c. \(\left\{ \begin{array}{l}12x + 18y = - 24\,\,\,\left( 1 \right)\\ - 2x - 3y = 4\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Chia hai vế của phương trình (1) với \( - 6\) và giữ nguyên phương trình (2), ta được hệ phương trình sau: \(\left\{ \begin{array}{l} - 2x - 3y = 4\,\,\,\left( 3 \right)\\ - 2x - 3y = 4\,\,\,\left( 4 \right)\end{array} \right.\)
Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0x + 0y = 0\) (5)
Do đó phương trình (5) có vô số nghiệm.
Vậy hệ phương trình đã cho có vô số nghiệm.
d. \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 6y = 10\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\)
Chia hai vế của phương trình (2) với \( - 2\) và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\left( 3 \right)\\x - 3y = - 5\,\,\,\left( 4 \right)\end{array} \right.\)
Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0y = 10\) (5)
Do đó phương trình (5) vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Bài tập 2 trang 25 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và đồ thị hàm số. Bài tập yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị, và vẽ đồ thị hàm số.
Bài tập 2 bao gồm các câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài tập 2 trang 25 SGK Toán 9 tập 1 - Cánh diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Câu a: Xác định hệ số góc của đường thẳng có phương trình y = -2x + 3.
Hệ số góc của đường thẳng y = -2x + 3 là a = -2.
Câu b: Điểm A(1; 1) có thuộc đồ thị của hàm số y = -2x + 3 hay không?
Thay x = 1 vào phương trình hàm số, ta được y = -2(1) + 3 = 1. Vì vậy, điểm A(1; 1) thuộc đồ thị của hàm số y = -2x + 3.
Câu c: Vẽ đồ thị của hàm số y = -2x + 3.
Để vẽ đồ thị, ta xác định hai điểm thuộc đồ thị, ví dụ:
Nối hai điểm A(1; 1) và B(0; 3) bằng một đường thẳng, ta được đồ thị của hàm số y = -2x + 3.
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Bài tập 2 trang 25 SGK Toán 9 tập 1 - Cánh diều là một bài tập cơ bản, giúp học sinh làm quen với các khái niệm về hàm số bậc nhất và đồ thị hàm số. Việc nắm vững kiến thức và phương pháp giải bài tập này sẽ là nền tảng vững chắc cho các bài học tiếp theo.
Khái niệm | Mô tả |
---|---|
Hàm số bậc nhất | y = ax + b (a ≠ 0) |
Hệ số góc | a trong y = ax + b |
Đồ thị hàm số | Tập hợp các điểm (x; y) thỏa mãn y = ax + b |