Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trục căn thức ở mẫu: a. (frac{9}{{2sqrt 3 }}); b. (frac{2}{{sqrt a }}) với (a > 0); c. (frac{7}{{3 - sqrt 2 }}); d. (frac{5}{{sqrt x + 3}}) với (x > 0;x ne 9); e. (frac{{sqrt 3 - sqrt 2 }}{{sqrt 3 + sqrt 2 }}); g. (frac{1}{{sqrt x - sqrt 3 }}) với (x > 0,x ne 3).
Đề bài
Trục căn thức ở mẫu:
a. \(\frac{9}{{2\sqrt 3 }}\);
b. \(\frac{2}{{\sqrt a }}\) với \(a > 0\);
c. \(\frac{7}{{3 - \sqrt 2 }}\);
d. \(\frac{5}{{\sqrt x + 3}}\) với \(x > 0;x \ne 9\);
e. \(\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\);
g. \(\frac{1}{{\sqrt x - \sqrt 3 }}\) với \(x > 0,x \ne 3\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;
+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.
Lời giải chi tiết
a. \(\frac{9}{{2\sqrt 3 }} = \frac{{9\sqrt 3 }}{{2\sqrt 3 .\sqrt 3 }} = \frac{{9\sqrt 3 }}{{2.3}} = \frac{{9\sqrt 3 }}{6} = \frac{{3\sqrt 3 }}{2}\).
b. \(\frac{2}{{\sqrt a }} = \frac{{2\sqrt a }}{{\sqrt a .\sqrt a }} = \frac{{2\sqrt a }}{a}\).
c. \(\frac{7}{{3 - \sqrt 2 }} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{{\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{{9 - 2}} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{7} = 3 + \sqrt 2 \).
d. \(\frac{5}{{\sqrt x + 3}} = \frac{{5\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} = \frac{{5\left( {\sqrt x - 3} \right)}}{{x - 9}}\).
e. \(\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} = \frac{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)}} = \frac{{3 - 2\sqrt 6 + 2}}{{3 - 2}} = 5 - 2\sqrt 6 \).
g. \(\frac{1}{{\sqrt x - \sqrt 3 }} = \frac{{1\left( {\sqrt x + \sqrt 3 } \right)}}{{\left( {\sqrt x - \sqrt 3 } \right)\left( {\sqrt x + \sqrt 3 } \right)}} = \frac{{\sqrt x + \sqrt 3 }}{{x - 3}}\).
Bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức cơ bản về hàm số bậc nhất:
Đề bài: (Nội dung đề bài cụ thể của bài tập 4 sẽ được trình bày tại đây. Ví dụ: Cho hàm số y = 2x - 1. Tìm tọa độ giao điểm của đồ thị hàm số với trục Ox và trục Oy.)
Lời giải:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Ngoài việc giải các bài tập cơ bản, bạn có thể tìm hiểu thêm về các ứng dụng của hàm số bậc nhất trong thực tế, ví dụ như tính toán chi phí, dự báo doanh thu, hoặc mô tả sự thay đổi của các đại lượng vật lý.
Bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các ứng dụng của nó. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Hàm số | Giao điểm với trục Ox | Giao điểm với trục Oy |
---|---|---|
y = 2x - 1 | (1/2; 0) | (0; -1) |
y = -x + 3 | (3; 0) | (0; 3) |