Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Giải các hệ phương trình: a. (left{ begin{array}{l}x + 3y = - 25x + 8y = 11end{array} right.) b. (left{ begin{array}{l}2x + 3y = - 23x - 2y = - 3end{array} right.) c. (left{ begin{array}{l}2x - 4y = - 1 - 3x + 6y = 2end{array} right.)

Đề bài

Giải các hệ phương trình:

a. \(\left\{ \begin{array}{l}x + 3y = - 2\\5x + 8y = 11\end{array} \right.\)

b. \(\left\{ \begin{array}{l}2x + 3y = - 2\\3x - 2y = - 3\end{array} \right.\)

c. \(\left\{ \begin{array}{l}2x - 4y = - 1\\ - 3x + 6y = 2\end{array} \right.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều 1

Giải hệ phương trình theo phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết

a. \(\left\{ \begin{array}{l}x + 3y = - 2\,\,\,\,\,\,\,\,\,\left( 1 \right)\\5x + 8y = 11\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ phương trình (1), ta có: \(x = - 2 - 3y\) (3)

Thế (3) vào phương trình (2), ta được: \(5.\left( { - 2 - 3y} \right) + 8y = 11\) (4)

Giải phương trình (4):

\(\begin{array}{l}5.\left( { - 2 - 3y} \right) + 8y = 11\\ - 10 - 15y + 8y = 11\\ - 7y = 11 + 10\\ - 7y = 21\\y = - 3\end{array}\)

Thay \(y = - 3\), vào phương trình (3), ta có: \(x = - 2 - 3.\left( { - 3} \right) = 7\).

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {7; - 3} \right)\).

b. \(\left\{ \begin{array}{l}2x + 3y = - 2\,\,\,\,\,\left( 1 \right)\\3x - 2y = - 3\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình (1) với 3 và phương trình (2) với (2), ta được hệ phương trình sau:

\(\left\{ \begin{array}{l}6x + 9y = - 6\,\,\,\,\,\,\left( 3 \right)\\6x - 4y = - 6\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế hai phương tình (3) và (4), ta nhận được phươn trình: \(13y = 0\), tức là \(y = 0\)

Thế \(y = 0\) vào phương trình (1), ta được phương trình: \(2x + 3.0 = - 2\)(5)

Giải phương trình (5):

\(\begin{array}{l}2x + 3.0 = - 2\\2x = - 2\\x = - 1\end{array}\)

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( { - 1;0} \right)\).

c. \(\left\{ \begin{array}{l}2x - 4y = - 1\,\,\,\,\left( 1 \right)\\ - 3x + 6y = 2\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Chia hai vế của phương trình (1) với 2 và phương trình (2) với \( - 3\), ta được hệ phương trình sau:

\(\left\{ \begin{array}{l}x - 2y = - \frac{1}{2}\,\,\,\,\,\left( 3 \right)\\x - 2y = -\frac{2}{3}\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế hai phương trình (3) và (4), ta nhận được phương trình: \(0x + 0y =- \frac{1}{2}+ \frac{2}{3}\) (vô lý)

Vậy hệ phương trình đã cho vô nghiệm.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều đặc sắc thuộc chuyên mục toán 9 sgk trên nền tảng toán học. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều: Hướng dẫn chi tiết

Bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm các phương pháp giải như phân tích thành nhân tử, sử dụng công thức nghiệm, và phương pháp hoàn thiện bình phương.

Nội dung bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều

Bài tập 5 thường bao gồm một số câu hỏi yêu cầu học sinh:

  • Giải các phương trình bậc hai cụ thể.
  • Xác định hệ số a, b, c của phương trình.
  • Tính delta (Δ) để xác định số nghiệm của phương trình.
  • Áp dụng công thức nghiệm để tìm nghiệm của phương trình.
  • Kiểm tra lại nghiệm bằng cách thay vào phương trình ban đầu.

Phương pháp giải phương trình bậc hai một ẩn

Có nhiều phương pháp để giải phương trình bậc hai một ẩn, nhưng phổ biến nhất là:

  1. Phương pháp phân tích thành nhân tử: Phương pháp này áp dụng khi phương trình có thể được phân tích thành tích của các nhân tử.
  2. Sử dụng công thức nghiệm: Đây là phương pháp tổng quát nhất, áp dụng cho mọi phương trình bậc hai. Công thức nghiệm được tính như sau:

x = (-b ± √(b2 - 4ac)) / 2a

Trong đó:

  • a, b, c là các hệ số của phương trình.
  • Δ = b2 - 4ac là biệt thức của phương trình.

Nếu Δ > 0, phương trình có hai nghiệm phân biệt. Nếu Δ = 0, phương trình có một nghiệm kép. Nếu Δ < 0, phương trình vô nghiệm.

Ví dụ minh họa giải bài tập 5 trang 26 SGK Toán 9 tập 1 - Cánh diều

Ví dụ: Giải phương trình 2x2 - 5x + 2 = 0

Giải:

a = 2, b = -5, c = 2

Δ = (-5)2 - 4 * 2 * 2 = 25 - 16 = 9

Vì Δ > 0, phương trình có hai nghiệm phân biệt:

x1 = (5 + √9) / (2 * 2) = (5 + 3) / 4 = 2

x2 = (5 - √9) / (2 * 2) = (5 - 3) / 4 = 0.5

Vậy, nghiệm của phương trình là x1 = 2 và x2 = 0.5

Lưu ý khi giải phương trình bậc hai

  • Luôn kiểm tra lại nghiệm bằng cách thay vào phương trình ban đầu.
  • Chú ý đến dấu của các hệ số a, b, c.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.

Bài tập luyện tập thêm

Để củng cố kiến thức, bạn có thể luyện tập thêm với các bài tập sau:

  • Giải phương trình x2 - 4x + 3 = 0
  • Giải phương trình 3x2 + 7x + 2 = 0
  • Giải phương trình x2 - 6x + 9 = 0

Kết luận

Việc giải phương trình bậc hai một ẩn là một kỹ năng quan trọng trong chương trình Toán 9. Hy vọng với hướng dẫn chi tiết này, bạn đã nắm vững phương pháp giải và có thể tự tin giải quyết các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 9