Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 26 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, chi tiết, kèm theo các bước giải cụ thể để bạn có thể dễ dàng theo dõi và nắm bắt.
Giải các phương trình: a. (left( {3x + 7} right)left( {4x + 9} right) = 0); b. (left( {5x - 0,2} right)left( {0,3x + 6} right) = 0); c. (xleft( {2x - 1} right) + 5left( {2x - 1} right) = 0); d. ({x^2} - 9 - left( {x + 3} right)left( {3x + 1} right) = 0); e. ({x^2} - 10x + 25 = 5left( {5 - x} right)); g. (4{x^2} = {left( {x - 12} right)^2}) Giải các phương trình: a. (left( {3x + 7} right)left( {4x + 9} right) = 0); b. (left( {5x - 0,2} right)left
Đề bài
Giải các phương trình:
a. \(\left( {3x + 7} \right)\left( {4x - 9} \right) = 0\);
b. \(\left( {5x - 0,2} \right)\left( {0,3x + 6} \right) = 0\);
c. \(x\left( {2x - 1} \right) + 5\left( {2x - 1} \right) = 0\);
d. \({x^2} - 9 - \left( {x + 3} \right)\left( {3x + 1} \right) = 0\);
e. \({x^2} - 10x + 25 = 3\left( {5 - x} \right)\);
g. \(4{x^2} = {\left( {x - 12} \right)^2}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Chuyển phương trình về phương trình tích.
+ Giải các phương trình trong tích.
+ Kết luận nghiệm.
Lời giải chi tiết
a. \(\left( {3x + 7} \right)\left( {4x - 9} \right) = 0\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(3x + 7 = 0\)
\(x = - \frac{7}{3}\);
*) \(4x - 9 = 0\)
\(x = \frac{9}{4}\).
Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{7}{3}\) và \(x = \frac{9}{4}\).
b. \(\left( {5x - 0,2} \right)\left( {0,3x + 6} \right) = 0\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(5x - 0,2 = 0\)
\(x = 0,04\);
*) \(0,3x + 6 = 0\)
\(x = - 20\).
Vậy phương trình đã cho có hai nghiệm là \(x = 0,04\) và \(x = - 20\).
c. \(x\left( {2x - 1} \right) + 5\left( {2x - 1} \right) = 0\)
Ta có: \(x\left( {2x - 1} \right) + 5\left( {2x - 1} \right) = 0\)
\(\left( {2x - 1} \right)\left( {x + 5} \right) = 0\).
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(2x - 1 = 0\)
\(x = \frac{1}{2}\);
*)\(x + 5 = 0\)
\(x = - 5\).
Vậy phương trình đã cho có hai nghiệm là \(x = \frac{1}{2}\) và \(x = - 5\).
d. \({x^2} - 9 - \left( {x + 3} \right)\left( {3x + 1} \right) = 0\)
Ta có: \({x^2} - 9 - \left( {x + 3} \right)\left( {3x + 1} \right) = 0\)
\(\begin{array}{l}\left( {x - 3} \right)\left( {x + 3} \right) - \left( {x + 3} \right)\left( {3x + 1} \right) = 0\\\left( {x + 3} \right)\left( {x - 3 - 3x - 1} \right) = 0\\\left( {x + 3} \right)\left( { - 2x - 4} \right) = 0\end{array}\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(x + 3 = 0\)
\(x = - 3\);
*) \( - 2x - 4 = 0\)
\(x = - 2\).
Vậy phương trình đã cho có hai nghiệm là \(x = - 3\) và \(x = - 2\).
e. \({x^2} - 10x + 25 = 3\left( {5 - x} \right)\)
Ta có: \({x^2} - 10x + 25 = 3\left( {5 - x} \right)\)
\(\begin{array}{l}{\left( {x - 5} \right)^2} = 3\left( {5 - x} \right)\\{\left( {5 - x} \right)^2} - 3\left( {5 - x} \right) = 0\\\left( {5 - x} \right)\left( {5 - x - 3} \right) = 0\\ \left( {5 - x} \right)\left( {2 - x} \right) = 0\end{array}\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(5 - x = 0\)
\(x = 5\);
*) \(2 - x = 0\)
\(x = 2\).
Vậy phương trình đã cho có hai nghiệm là \(x = 5\) và \(x = 2\).
g. \(4{x^2} = {\left( {x - 12} \right)^2}\)
Ta có: \(4{x^2} = {\left( {x - 12} \right)^2}\)
\(\begin{array}{l}4{x^2} - {\left( {x - 12} \right)^2} = 0\\\left( {2x - x + 12} \right)\left( {2x + x - 12} \right) = 0\\\left( {x + 12} \right)\left( {3x - 12} \right) = 0\end{array}\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(x + 12 = 0\)
\(x = - 12\);
*) \(3x - 12 = 0\)
\(x = 4\).
Vậy phương trình đã cho có hai nghiệm là \(x = - 12\) và \(x = 4\).
Bài tập 3 trang 26 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và đồ thị hàm số để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Bài tập 3 thường yêu cầu học sinh:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích từng phần của bài tập và đưa ra lời giải chi tiết. (Ở đây sẽ là nội dung giải chi tiết bài tập 3, bao gồm các bước giải, giải thích và kết luận. Nội dung này sẽ được trình bày chi tiết và đầy đủ, đảm bảo người đọc có thể hiểu và áp dụng được vào các bài tập tương tự.)
Để minh họa cho cách giải bài tập 3, chúng ta sẽ xét một ví dụ cụ thể:
Ví dụ: Cho hàm số y = 2x + 1. Hãy vẽ đồ thị hàm số và tìm tọa độ giao điểm của đồ thị với trục Ox.
Lời giải:
Khi giải bài tập 3 trang 26 SGK Toán 9 tập 1 - Cánh diều, bạn cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể làm thêm các bài tập sau:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập 3 trang 26 SGK Toán 9 tập 1 - Cánh diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!