Chào mừng các em học sinh đến với lời giải chi tiết bài tập 6 trang 65 SGK Toán 9 tập 2 - Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các lời giải bài tập, kiến thức trọng tâm và các bài tập luyện tập đa dạng.
Tìm hai số trong mỗi trường hợp sau: a) Tổng của chúng bằng 7 và tích của chúng bằng 12. b) Tổng của chúng bằng 1 và tích của chúng bằng -6.
Đề bài
Tìm hai số trong mỗi trường hợp sau:
a) Tổng của chúng bằng 7 và tích của chúng bằng 12.
b) Tổng của chúng bằng 1 và tích của chúng bằng -6.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Lập phương trình bậc 2 một ẩn với \(S,P.\)
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\)
Lời giải chi tiết
a) Hai số cần tìm là nghiệm của phương trình: \({x^2} - 7x + 12 = 0\).
Phương trình có các hệ số: \(a = 1;b = - 7;c = 12.\)
\(\Delta = {( - 7)^2} - 4.1.12 = 1 > 0\)
Phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt 1 }}{{2.1}} = 4;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt 1 }}{{2.1}} = 3.\)
Vậy hai số cần tìm là 3; 4.
b) Hai số cần tìm là nghiệm của phương trình: \({x^2} - x - 6 = 0\).
Phương trình có các hệ số: \(a = 1;b = - 1;c = - 6.\)
\(\Delta = {( - 1)^2} - 4.1.\left( { - 6} \right) = 25 > 0\)
Phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{ - \left( { - 1} \right) + \sqrt {25} }}{{2.1}} = 3;{x_2} = \frac{{ - \left( { - 1} \right) - \sqrt {25} }}{{2.1}} = - 2.\)
Vậy hai số cần tìm là -2; 3.
Bài tập 6 trang 65 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về hàm số, bao gồm:
Bài tập 6 yêu cầu học sinh xác định hàm số bậc nhất dựa vào các thông tin cho trước. Thông thường, các thông tin này có thể là:
Để giải bài tập này, học sinh có thể áp dụng các phương pháp sau:
Ví dụ: Xác định hàm số bậc nhất có đồ thị đi qua hai điểm A(1; 2) và B(-1; 0).
Giải:
Thay tọa độ điểm A(1; 2) vào phương trình y = ax + b, ta được: 2 = a(1) + b => a + b = 2 (1)
Thay tọa độ điểm B(-1; 0) vào phương trình y = ax + b, ta được: 0 = a(-1) + b => -a + b = 0 (2)
Giải hệ phương trình (1) và (2), ta được: a = 1 và b = 1.
Vậy hàm số bậc nhất cần tìm là: y = x + 1.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 9 tập 2 - Cánh diều và các tài liệu luyện tập khác. Ngoài ra, các em có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Khi giải bài tập về hàm số bậc nhất, các em cần chú ý:
Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!