Logo Header
  1. Môn Toán
  2. Giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài tập 4 trang 26, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.

Giải các phương trình : a. (frac{{ - 6}}{{x + 3}} = frac{2}{3}); b. (frac{{x - 2}}{2} + frac{1}{{2x}} = 0); c. (frac{8}{{3x - 4}} = frac{1}{{x + 2}}); d. (frac{x}{{x - 2}} + frac{2}{{{{left( {x - 2} right)}^2}}} = 1); e. (frac{{3x - 2}}{{x + 1}} = 4 - frac{{x + 2}}{{x - 1}}); g. (frac{{{x^2}}}{{left( {x - 1} right)left( {x - 2} right)}} = 1 - frac{1}{{x - 1}}).

Đề bài

Giải các phương trình :

a. \(\frac{{ - 6}}{{x + 3}} = \frac{2}{3}\);

b. \(\frac{{x - 2}}{2} + \frac{1}{{2x}} = 0\);

c. \(\frac{8}{{3x - 4}} = \frac{1}{{x + 2}}\);

d. \(\frac{x}{{x - 2}} + \frac{2}{{{{\left( {x - 2} \right)}^2}}} = 1\);

e. \(\frac{{3x - 2}}{{x + 1}} = 4 - \frac{{x + 2}}{{x - 1}}\);

g. \(\frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = 1 - \frac{1}{{x - 1}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều 1

+ Tìm điều kiện xác định.

+ Tìm mẫu chung, quy đồng mẫu, khử mẫu.

+ Giải phương trình.

+ Đối chiếu với điều kiện xác định.

+ Kết luận nghiệm.

Lời giải chi tiết

a. \(\frac{{ - 6}}{{x + 3}} = \frac{2}{3}\)

Điều kiện xác định: \(x \ne - 3\).

\(\begin{array}{l}\frac{{ - 6}}{{x + 3}} = \frac{2}{3}\\\frac{{ - 18}}{{3\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{3\left( {x + 3} \right)}}\\2\left( {x + 3} \right) = - 18\\x + 3 = - 9\\x = - 12\end{array}\)

Ta thấy \(x = - 12\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x = - 12\).

b. \(\frac{{x - 2}}{2} + \frac{1}{{2x}} = 0\)

Điều kiện xác định: \(x \ne 0\)

\(\begin{array}{l}\frac{{x - 2}}{2} + \frac{1}{{2x}} = 0\\\frac{{x\left( {x - 2} \right)}}{{2x}} + \frac{1}{{2x}} = 0\\x\left( {x - 2} \right) + 1 = 0\\{x^2} - 2x + 1 = 0\\{\left( {x - 1} \right)^2} = 0\\x - 1 = 0\\x = 1\end{array}\)

Ta thấy \(x = 1\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x = 1\).

c. \(\frac{8}{{3x - 4}} = \frac{1}{{x + 2}}\)

Điều kiện xác định: \(x \ne \frac{4}{3}\) và \(x \ne - 2\).

\(\begin{array}{l}\frac{8}{{3x - 4}} = \frac{1}{{x + 2}}\\\frac{{8\left( {x + 2} \right)}}{{\left( {3x - 4} \right)\left( {x + 2} \right)}} = \frac{{3x - 4}}{{\left( {3x - 4} \right)\left( {x + 2} \right)}}\end{array}\)

\(\begin{array}{l}8\left( {x + 2} \right) = 3x - 4\\8x + 16 - 3x + 4 = 0\\5x + 20 = 0\\x = - 4\end{array}\)

Ta thấy \(x = - 4\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x = - 4\).

d. \(\frac{x}{{x - 2}} + \frac{2}{{{{\left( {x - 2} \right)}^2}}} = 1\)

Điều kiện xác định: \(x \ne 2\)

\(\begin{array}{l}\frac{x}{{x - 2}} + \frac{2}{{{{\left( {x - 2} \right)}^2}}} = 1\\\frac{{x\left( {x - 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} + \frac{2}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{{{\left( {x - 2} \right)}^2}}}\\x\left( {x - 2} \right) + 2 = {\left( {x - 2} \right)^2}\\{x^2} - 2x + 2 = {x^2} - 4x + 4\\{x^2} - 2x + 2 - {x^2} + 4x - 4 = 0\\2x - 2 = 0\\x = 1\end{array}\)

Ta thấy \(x = 1\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x = 1\).

e. \(\frac{{3x - 2}}{{x + 1}} = 4 - \frac{{x + 2}}{{x - 1}}\)

Điều kiện xác định: \(x \ne - 1\) và \(x \ne 1\)

\(\begin{array}{l}\frac{{3x - 2}}{{x + 1}} = 4 - \frac{{x + 2}}{{x - 1}}\\\frac{{\left( {3x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{4\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{\left( {x + 2} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\\left( {3x - 2} \right)\left( {x - 1} \right) = 4\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x + 2} \right)\left( {x + 1} \right)\\3{x^2} - 3x - 2x + 2 = 4{x^2} - 4 - {x^2} - 3x - 2\\3{x^2} - 5x + 2 = 3{x^2} - 3x - 6\\3{x^2} - 3{x^2} - 5x + 3x = - 6 - 2\\ - 2x = - 8\\x = 4\end{array}\)

Ta thấy \(x = 4\) thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho có nghiệm \(x = 4\).

g. \(\frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = 1 - \frac{1}{{x - 1}}\)

Điều kiện xác định: \(x \ne 1\) và \(x \ne 2\).

\(\begin{array}{l}\frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = 1 - \frac{1}{{x - 1}}\\\frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\\{x^2} = \left( {x - 1} \right)\left( {x - 2} \right) - x + 2\\{x^2} = {x^2} - 3x + 2 - x + 2\\{x^2} - {x^2} + 4x =4\\4x = 4\\x = 1\end{array}\)

Ta thấy \(x = 1\) không thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình đã cho vô nghiệm.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều đặc sắc thuộc chuyên mục sách bài tập toán 9 trên nền tảng toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều: Hướng dẫn chi tiết

Bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Phần 1: Đề bài

Đề bài yêu cầu chúng ta xác định hệ số góc và tung độ gốc của hàm số bậc nhất dựa trên các thông tin đã cho. Cụ thể, bài tập có thể yêu cầu:

  • Xác định hệ số góc và tung độ gốc khi biết phương trình hàm số.
  • Viết phương trình hàm số khi biết hệ số góc và tung độ gốc.
  • Xác định hàm số đi qua hai điểm cho trước.

Phần 2: Phương pháp giải

Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:

  • Hàm số bậc nhất: Hàm số có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.
  • Hệ số góc: Cho biết độ dốc của đường thẳng biểu diễn hàm số.
  • Tung độ gốc: Là giá trị của y khi x = 0, tức là giao điểm của đường thẳng với trục Oy.
  • Phương trình đường thẳng đi qua hai điểm: Nếu đường thẳng đi qua hai điểm (x1, y1) và (x2, y2) thì phương trình của đường thẳng là: (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1).

Phần 3: Giải bài tập cụ thể (Ví dụ minh họa)

Giả sử đề bài yêu cầu xác định hệ số góc và tung độ gốc của hàm số y = 2x - 3.

Giải:

Dựa vào phương trình hàm số y = 2x - 3, ta có thể xác định:

  • Hệ số góc a = 2
  • Tung độ gốc b = -3

Giả sử đề bài yêu cầu viết phương trình hàm số có hệ số góc a = -1 và đi qua điểm A(1, 2).

Giải:

Ta có phương trình hàm số có dạng y = -x + b. Thay tọa độ điểm A(1, 2) vào phương trình, ta được:

2 = -1 * 1 + b

=> b = 3

Vậy phương trình hàm số là y = -x + 3.

Phần 4: Luyện tập thêm

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các bài tập luyện tập khác. Hãy chú ý áp dụng các kiến thức và phương pháp đã học để giải quyết các bài toán một cách hiệu quả.

Phần 5: Tổng kết

Bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất. Việc nắm vững kiến thức và phương pháp giải bài tập này sẽ giúp bạn tự tin hơn trong quá trình học tập môn Toán.

Giaitoan.edu.vn hy vọng rằng hướng dẫn chi tiết này sẽ giúp bạn giải bài tập 4 trang 26 SGK Toán 9 tập 1 - Cánh diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Khái niệmGiải thích
Hàm số bậc nhấty = ax + b (a ≠ 0)
Hệ số góca, thể hiện độ dốc của đường thẳng
Tung độ gốcb, giao điểm của đường thẳng với trục Oy
Bảng tóm tắt các khái niệm quan trọng

Tài liệu, đề thi và đáp án Toán 9