Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 39 sách giáo khoa Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em học sinh nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, …, 52, hai thẻ khác nhau thì viết hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp, tính xác suất của mỗi biến cố sau: a) “Số xuất hiện trên thẻ được rút ra là số nhỏ hơn 27”. b) “Số xuất hiện trên thẻ được lấy ra lớn hơn 19 và nhỏ hơn 51”.
Đề bài
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, …, 52, hai thẻ khác nhau thì viết hai số khác nhau.
Rút ngẫu nhiên một thẻ trong hộp, tính xác suất của mỗi biến cố sau:
a) “Số xuất hiện trên thẻ được rút ra là số nhỏ hơn 27”.
b) “Số xuất hiện trên thẻ được lấy ra lớn hơn 19 và nhỏ hơn 51”.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Bước 1: Đếm số kết quả có thể xảy ra.
Bước 2: Đếm số kết quả thận lợi cho từng biến cố.
Bước 3: Lập tỉ số giữa số liệu ở bước 1 và bước 2.
Lời giải chi tiết
Ta thấy, các kết quả có thể xảy ra của phép thử đó là đồng khả năng nên có 52 khả năng có thể xảy ra khi rút ngẫu nhiên một thẻ trong hộp
a) Các số nhỏ hơn 27 gồm: 1, 2, 3, 4, …, 26.
Có 26 kết quả thuận lợi cho biến cố: “Số xuất hiện trên thẻ được rút ra là số nhỏ hơn 27”
Vậy xác suất của biến cố là \(\frac{{26}}{{52}} = \frac{1}{2}\)
b) Các số lớn hơn 19 và nhỏ hơn 51 gồm: 20, 21, 22, …, 50.
Có 31 kết quả thuận lợi cho biến cố: “Số xuất hiện trên thẻ được lấy ra lớn hơn 19 và nhỏ hơn 51”
Vậy xác suất của biến cố là \(\frac{{31}}{{52}}\)
Bài tập 3 trang 39 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hệ số góc và đường thẳng song song.
Bài tập 3 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để xác định hệ số góc của đường thẳng, ta cần đưa phương trình đường thẳng về dạng y = ax + b, trong đó a là hệ số góc.
Ví dụ: Cho đường thẳng 2x + 3y = 5. Ta có thể viết lại phương trình này như sau:
3y = -2x + 5
y = (-2/3)x + 5/3
Vậy hệ số góc của đường thẳng là -2/3.
Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2.
Ví dụ: Cho hai đường thẳng y = 2x + 1 và y = 2x - 3. Vì hệ số góc của hai đường thẳng bằng nhau (a1 = a2 = 2) và tung độ gốc khác nhau (b1 = 1 ≠ b2 = -3), nên hai đường thẳng này song song.
Để viết phương trình đường thẳng thỏa mãn các điều kiện cho trước, ta cần xác định hệ số góc và tung độ gốc của đường thẳng.
Ví dụ: Viết phương trình đường thẳng đi qua điểm A(1; 2) và song song với đường thẳng y = 3x + 1.
Vì đường thẳng cần viết song song với đường thẳng y = 3x + 1, nên hệ số góc của nó cũng là 3. Vậy phương trình đường thẳng có dạng y = 3x + b.
Thay tọa độ điểm A(1; 2) vào phương trình, ta được:
2 = 3(1) + b
b = -1
Vậy phương trình đường thẳng cần viết là y = 3x - 1.
Kiến thức về hàm số bậc nhất có ứng dụng rộng rãi trong thực tế, chẳng hạn như:
Bài tập 3 trang 39 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc các em học tốt!
Khái niệm | Giải thích |
---|---|
Hàm số bậc nhất | Hàm số có dạng y = ax + b, trong đó a và b là các số thực. |
Hệ số góc | Số a trong phương trình y = ax + b. |
Đường thẳng song song | Hai đường thẳng không có điểm chung. |